1
|
Lv L, Chen B, Gao Y, Sun N, Li W, Fu W. Discovery of Novel N-Sulfonamide-tetrahydroquinolines as Potent Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists for the Treatment of Psoriasis. J Med Chem 2024; 67:21400-21420. [PMID: 39611350 DOI: 10.1021/acs.jmedchem.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Guided by the mode of action of 13, our previously discovered RORγt inverse agonist, we conducted five rounds of design syntheses and structure-activity relationship (SAR) studies, ultimately identifying RORγt inverse agonist 5a, which exhibited superior in vitro activity compared to 13. Besides, 5a showed promising therapeutic effects in alleviating psoriasis in mice by intraperitoneal injection. Due to the high lipophilicity and in vitro pharmacokinetic properties of 5a, it was formulated into an ointment, which enabled effective skin retention and mitigated systemic side effects. The ointment of 5a was assessed in the mouse model, where it demonstrated significant antipsoriatic effects, superior to 13 and comparable to the positive control GSK2981278, without obvious toxicity. Furthermore, we elucidated molecular mechanism of action for inverse agonist 5a and agonist 1e by means of molecular dynamics (MD) simulation. In summary, 5a holds great promise as a novel antipsoriatic drug candidate.
Collapse
Affiliation(s)
- Lunan Lv
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Baiyu Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yang Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Nannan Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
2
|
Qi L, Ping YN, Sun SS, Xu R, Zhou XR. Discovery of novel and potent sulfonamide derivatives as orally available drug for psoriasis. Bioorg Chem 2024; 153:107853. [PMID: 39396455 DOI: 10.1016/j.bioorg.2024.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The retinoid-related orphan receptor gamma-t (RORγt), a member of the nuclear receptor superfamily, functions as a ligand-dependent transcription factor. As a pivotal modulator in the development and functionality of T-helper 17 (Th17) cells, RORγt plays a crucial role in immune response regulation. Inverse agonists targeting RORγt demonstrate significant potential in modulating Th17 cell activity, offering a promising avenue for the development of therapeutics aimed at treating autoimmune diseases associated with Th17 dysregulation. GSK2981278 is a potent RORγt inverse agonist, but a drawback of GSK2981278 is its low pharmacokinetic profile, leading to a clinical failure. We have explored detailed structure-activity relationship of GSK2981278 trying to improve metabolic stability while maintaining RORγt activity. As a result, a novel series of sulfonamide derivatives was discovered as potent RORγt inverse agonists with improved drug-like properties. b14 had greatly improved In Vitro metabolic stability (T1/2 = 36.2 min) compared to GSK2981278 (T1/2 = 0.8 min). Oral dosing of compound b14 resulted in a dose-dependent suppression of IL-17A cytokine levels within a murine model of imiquimod-induced skin inflammation, underscoring its potential as a therapeutic intervention.
Collapse
Affiliation(s)
- Liang Qi
- School of Pharmacy, Jiangsu Medical College, Yancheng 224005, Jiangsu Province, PR China.
| | - Yi-Nuo Ping
- School of Pharmacy, Jiangsu Medical College, Yancheng 224005, Jiangsu Province, PR China
| | - Shang-Shang Sun
- School of Pharmacy, Jiangsu Medical College, Yancheng 224005, Jiangsu Province, PR China
| | - Ran Xu
- School of Pharmacy, Jiangsu Medical College, Yancheng 224005, Jiangsu Province, PR China
| | - Xin-Ru Zhou
- School of Pharmacy, Jiangsu Medical College, Yancheng 224005, Jiangsu Province, PR China
| |
Collapse
|
3
|
Abdel-Rahman SA, Brogi S, Gabr MT. Lithocholic acid derivatives as potent modulators of the nuclear receptor RORγt. RSC Adv 2024; 14:2918-2928. [PMID: 38239446 PMCID: PMC10794885 DOI: 10.1039/d3ra08086b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor found in various tissues that plays a crucial role in the differentiation and proliferation of T helper 17 (Th17) cells, as well as in their generation of the pro-inflammatory cytokine IL-17A. RORγt represents a promising therapeutic target for autoimmune diseases, metabolic disorders, and multiple tumors. Despite extensive research efforts focused on the development of small molecule RORγt modulators, no drug candidates have advanced to phase 3 clinical trials owing to a lack of efficacy or safety margin. This outcome highlights the unmet need to optimize small molecule drug candidates targeting RORγt to develop effective therapies for autoimmune and inflammatory diseases. In this study, we synthesized and evaluated 3-oxo-lithocholic acid amidates as a new class of RORγt modulators. Our evaluation entailed biophysical screening, cellular screening in different platforms, molecular docking, and in vitro pharmacokinetic profiling. The top compound from our study (3-oxo-lithocholic acid amidate, A2) binds to RORγt at an equilibrium dissociation constant (KD) of 16.5 ± 1.34 nM based on microscale thermophoresis (MST). Assessment of the efficacy of A2 in the cellular RORγt reporter luciferase assay revealed a half-maximal inhibitory concentration (IC50) value of 225 ± 10.4 nM. Unlike 3-oxo-lithocholic acid, A2 demonstrated the ability to reduce the IL-17A mRNA expression levels in EL4 cells with RORγt expression using quantitative reverse transcriptase PCR (RT-PCR). Validation of the desirable physicochemical properties and stability of A2 sets the stage for the preclinical evaluation of this new class of RORγt modulators in animal models of autoimmune diseases.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Simone Brogi
- Department of Pharmacy, University of Pisa via Bonanno 6 56126 Pisa Italy
| | - Moustafa T Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
| |
Collapse
|
4
|
Lu L, Huang Y, Song M, Sun N, Xia L, Yu M, Zhao M, Qiu R, Chen JA, Zhao Y, Wang H, Guo H, Li Y, Zhu D, Wang Y, Xie Q. Discovery of Biaryl Amide Derivatives as Potent, Selective, and Orally Bioavailable RORγt Agonists for Cancer Immunotherapy. J Med Chem 2023; 66:16091-16108. [PMID: 37982494 DOI: 10.1021/acs.jmedchem.3c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The master transcription factor receptor retinoic acid receptor-related orphan receptor γt (RORγt) regulates the differentiation of T-helper 17 (Th17) cells and the production of interleukin-17 (IL-17). Activation of RORγt+ T cells in the tumor microenvironment promotes immune infiltration to more effectively inhibit tumor growth. Therefore, RORγt agonists provide a reachable approach to cancer immunotherapy. Herein, a series of biaryl amide derivatives as novel RORγt agonists were designed, synthesized, and evaluated. Starting from the reported RORγt inverse agonist GSK805 (1), "functionality switching" and structure-based drug optimization led to the discovery of a promising RORγt agonist lead compound 14, which displayed potent and selective RORγt agonist activity and significantly improved metabolic stability. With excellent in vivo pharmacokinetic profiles, compound 14 demonstrated robust efficacy in preclinical tumor models of mouse B16F10 melanoma and LLC lung adenocarcinoma. Taken together, current studies indicate that 14 deserves further investigation as a potential lead RORγt agonist for cancer immunotherapy.
Collapse
Affiliation(s)
- Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yafei Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Meiqi Song
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Nannan Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Xia
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingcheng Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Meiling Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ruomeng Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunpeng Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Huimin Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
5
|
Bachorz RA, Pastwińska J, Nowak D, Karaś K, Karwaciak I, Ratajewski M. The application of machine learning methods to the prediction of novel ligands for ROR γ/ROR γT receptors. Comput Struct Biotechnol J 2023; 21:5491-5505. [PMID: 38022699 PMCID: PMC10663739 DOI: 10.1016/j.csbj.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this work, we developed and applied a computational procedure for creating and validating predictive models capable of estimating the biological activity of ligands. The combination of modern machine learning methods, experimental data, and the appropriate setup of molecular descriptors led to a set of well-performing models. We thoroughly inspected both the methodological space and various possibilities for creating a chemical feature space. The resulting models were applied to the virtual screening of the ZINC20 database to identify new, biologically active ligands of RORγ receptors, which are a subfamily of nuclear receptors. Based on the known ligands of RORγ, we selected candidates and calculate their predicted activities with the best-performing models. We chose two candidates that were experimentally verified. One of these candidates was confirmed to induce the biological activity of the RORγ receptors, which we consider proof of the efficacy of the proposed methodology.
Collapse
Affiliation(s)
- Rafał A. Bachorz
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Joanna Pastwińska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Damian Nowak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Kaja Karaś
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Iwona Karwaciak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Marcin Ratajewski
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| |
Collapse
|
6
|
Fouda A, Negi S, Zaremba O, Gaidar RS, Moroz YS, Rusanov E, Paraskevas S, Tchervenkov J. Discovery, Synthesis, and In Vitro Characterization of 2,3 Derivatives of 4,5,6,7-Tetrahydro-Benzothiophene as Potent Modulators of Retinoic Acid Receptor-Related Orphan Receptor γt. J Med Chem 2023; 66:7355-7373. [PMID: 37172324 PMCID: PMC10259452 DOI: 10.1021/acs.jmedchem.3c00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor that is expressed in a variety of tissues and is a potential drug target for the treatment of inflammatory and auto-immune diseases, metabolic diseases, and resistant cancer types. We herein report the discovery of 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene modulators of RORγt. We also report the solubility in acidic/neutral pH, mouse/human/dog/rat microsomal stability, Caco-2, and MDR1-MDCKII permeabilities of a set of these derivatives. For this group of modulators, inverse agonism by steric clashes and push-pull mechanisms induce greater instability to protein conformation compared to agonist lock hydration. Independent of the two mechanisms, we observed a basal modulatory activity of the tested 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene toward RORγt due to the interactions with the Cys320-Glu326 and Arg364-Phe377 hydrophilic regions. The drug discovery approach reported in the current study can be employed to discover modulators of nuclear receptors and other globular protein targets.
Collapse
Affiliation(s)
- Ahmed Fouda
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | - Sarita Negi
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | | | | | - Yurii S. Moroz
- Chemspace
LLC, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - Eduard Rusanov
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Kyïv 02094, Ukraine
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
| | - Steven Paraskevas
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Jean Tchervenkov
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
7
|
Lu L, Chen S, Yu M, Zhou R, Guo S, Chen JA, Wang H, Chen S, Luo C, Xie Q, Wang Y. Discovery of novel triazine derivatives as potent retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists. Eur J Med Chem 2023; 256:115424. [PMID: 37167779 DOI: 10.1016/j.ejmech.2023.115424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to treat inflammatory and autoimmune diseases via modulating the interleukin-17 (IL-17) production by T helper 17 (Th17) cells. Herein, we reported a series of triazine-based derivatives as novel RORγt inverse agonists. By screening of our in-house compound library, the hit compound 1 was identified with weak RORγt inhibitory activity. Subsequently, we engineered detailed structural modifications to explore the structure-activity relationships (SARs) of triazines derivatives, which led to discovery of a number of potent RORγt inverse agonists with IC50 values in the range of 7 nM-50 nM in RORγt dual FRET assay. Among them, compound 14g displayed potent RORγt inverse agonistic activity with an IC50 value of 22.9 nM in dual FRET assay. In a cell-based reporter gene assay, compound 14g showed an IC50 value of 0.428 μM and maximum inhibition rate of 108.9%. Compound 14g also exhibited good metabolic stability and a decent pharmacokinetic profile with a low clearance (CL = 0.229 L/h/kg) and a reasonable oral exposure (AUC0-Last = 5058 ng/mL*h). Most importantly, 14g alleviated the severity of imiquimod-induced psoriasis in mice. Taken together, triazine-based derivatives represent a new chemical class of RORγt inverse agonists as potential therapeutic agents against autoimmune diseases.
Collapse
Affiliation(s)
- Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Song Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Mingcheng Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Ronghui Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Siqi Guo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Shijie Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China; Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
Zhang J, Chen B, Zhang C, Sun N, Huang X, Wang W, Fu W. Modes of action insights from the crystallographic structures of retinoic acid receptor-related orphan receptor-γt (RORγt). Eur J Med Chem 2023; 247:115039. [PMID: 36566711 DOI: 10.1016/j.ejmech.2022.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
RORγt plays an important role in mediating IL-17 production and some tumor cells. It has four functional domains, of which the ligand-binding domain (LBD) is responsible for binding agonists to recruit co-activators or inverse agonists to prevent co-activator recruiting the agonists. Thus, potent ligands targeting the LBD of this protein could provide novel treatments for cancer and autoimmune diseases. In this perspective, we summarized and discussed various modes of action (MOA) of RORγt-ligand binding structures. The ligands can bind with RORγt at either orthosteric site or the allosteric site, and the binding modes at these two sites are different for agonists and inverse agonist. At the orthosteric site, the binding of agonist is to stabilize the H479-Y502-F506 triplet interaction network of RORγt. The binding of inverse agonist features as these four apparent ways: (1) blocking the entrance of the agonist pocket in RORγt; (2) directly breaking the H479-Y502 pair interactions; (3) destabilizing the triplet H479-Y502-F506 interaction network through perturbing the conformation of the side chain in M358 at the bottom of the binding pocket; (4) and destabilizing the triplet H479-Y502-F506 through changing the conformation of the side chain of residue W317 side chain. At the allosteric site of RORγt, the binding of inverse agonist was found recently to inhibit the activation of protein by interacting directly with H12, which results in unfolding of helix 11' and orientation of H12 to directly block cofactor peptide binding. This overview of recent advances in the RORγt structures is expected to provide a guidance of designing more potent drugs to treat RORγt-related diseases.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Baiyu Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Chao Zhang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Nannan Sun
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Xiaoqin Huang
- Center for Research Computing, Office of Information Technology, Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
| | - Wuqing Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Wei Fu
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China.
| |
Collapse
|
9
|
Chen L, Su M, Wu XZ, Wang DZ, Kang YY, Wang CG, Assani I, Wang MX, Zhao SF, Lv SM, Wang JW, Sun B, Li Y, Jin Q, Huang RZ, Liao ZX. Discovery of 2H-chromone-4-one based sulfonamide derivatives as potent retinoic acid receptor-related orphan receptor γt inverse agonists. Eur J Med Chem 2022; 229:114065. [PMID: 34971876 DOI: 10.1016/j.ejmech.2021.114065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Retinoic acid receptor related orphan receptor γt (RORγt), identified as the essential functional regulator of IL-17 producing Th17 cells, is an attractive drug target for treating autoimmune diseases. Starting from the reported GSK2981278 (Phase II), we structurally modified and synthesized a series of 2H-chromone-4-one based sulfonamide derivatives as novel RORγt inverse agonists, which significantly improved their human metabolic stabilities while maintaining a potent RORγt inverse agonist profile. Efforts in reducing the lipophilicity and improving the LLE values led to the discovery of c9, which demonstrated potent RORγt inverse agonistic activity and consistent metabolic stability. During in vivo studies, oral administration of compound c9 exhibited a robust and dose-dependent inhibition of IL-17A cytokine expression and significantly lessened the skin inflammatory symptoms in the mouse imiquimod-induced skin inflammation model. Docking analysis of the binding mode revealed that c9 can suitably occupy the active pocket, and the introduction of the morpholine pyridine group can interact with Leu396, His479, and Cys393. Thus, compound c9 was selected as a preclinical compound for treating Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Mei Su
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing, 210042, China
| | - Xian-Zhi Wu
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing, 210042, China
| | - De-Zhong Wang
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing, 210042, China
| | - Yang-Yang Kang
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing, 210042, China
| | - Chun-Gu Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Mu-Xuan Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shi-Feng Zhao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shen-Min Lv
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Jia-Wei Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Bo Sun
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yan Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Qiu Jin
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing, 210042, China.
| | - Ri-Zhen Huang
- College of Biotechnology, Guilin Medical University, Guilin, 541004, China.
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
10
|
Chen JA, Ma H, Liu Z, Tian J, Lu S, Fang W, Ze S, Lu W, Xie Q, Huang J, Wang Y. Discovery of Orally Available Retinoic Acid Receptor-Related Orphan Receptor γ-t/Dihydroorotate Dehydrogenase Dual Inhibitors for the Treatment of Refractory Inflammatory Bowel Disease. J Med Chem 2021; 65:592-615. [PMID: 34957834 DOI: 10.1021/acs.jmedchem.1c01746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial autoimmune disease, representing a major clinical challenge. Herein, a strategy of dual-targeting approach employing retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH) was proposed for the treatment of IBD. Dual RORγt/DHODH inhibitors are expected not only to reduce RORγt-driven Th17 cell differentiation but also to mitigate the expansion and activation of T cells, which may enhance anti-inflammatory effects. Starting from 2-aminobenzothiazole hit 1, a series of 2-aminotetrahydrobenzothiazoles were discovered as potent dual RORγt/DHODH inhibitors. Compound 14d stands out with IC50 values of 0.110 μM for RORγt and of 0.297 μM for DHODH. With acceptable mouse pharmacokinetic profiles, 14d exhibited remarkable in vivo anti-inflammatory activity and dose-dependently alleviated the severity of dextran sulfate sodium (DSS)-induced acute colitis in mice. Taken together, the present study provides a novel framework for the development of therapeutic agents for the treatment of IBD.
Collapse
Affiliation(s)
- Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinlong Tian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sisi Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuyin Ze
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Fudan Zhangjiang Institute, 666 Zhangheng Road, Shanghai 201203, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
11
|
Chen L, Su M, Jin Q, Wang CG, Assani I, Wang MX, Zhao SF, Lv SM, Wang JW, Sun B, Li Y, Liao ZX. Discovery of N-(2-benzyl-4-oxochroman-7-yl)-2-(5-(ethylsulfonyl) pyridin-2-yl) acetamide (b12) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor γt inverse agonist. Bioorg Chem 2021; 119:105483. [PMID: 34906860 DOI: 10.1016/j.bioorg.2021.105483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 01/12/2023]
Abstract
The nuclear receptor retinoic acid receptor-related orphan receptor γ (RORγ, NR1F3, or RORc) exists in two isoforms, with one isoform (RORγ or RORc1) widely expressed in a variety of tissues, and the expression of the second isoform (RORγt or RORc2) restricted to the thymus and cells of the immune system. RORγt is a key regulator of the development and functions of T-helper 17 (Th17) cells. Clinical proof-of-concept (PoC) with small molecule inverse agonists of RORγt has been achieved with VTP-43742 (Phase II) for the treatment of psoriasis, and pre-clinical PoC for this mechanism has also been established for the treatment of autoimmune diseases. A series of aryl sulfonyl derivatives as novel RORγt inverse agonists were designed and synthesized based on VTP-43742. We conducted structural modifications that improved the activity profile. In pharmacodynamic (PD) studies, oral administration of compound b12 showed robust and dose-dependent inhibition of IL-6 and IL-17A cytokine expression. The ability of compound b12 to reduce the levels of IL-6 and IL-17A in vivo after oral dosing in mice, and a corresponding reduction in skin inflammation further supports the potential of small molecule RORγt modulation as a therapeutic target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Mei Su
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing 210042, China
| | - Qiu Jin
- Jiangsu Carefree Pharmaceutical Co., Ltd, Nanjing 210042, China
| | - Chun-Gu Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Mu-Xuan Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shi-Feng Zhao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shen-Min Lv
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jia-Wei Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Bo Sun
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yan Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
12
|
Chen L, Su M, Jin Q, Wang W, Wang CG, Assani I, Wang MX, Zhao SF, Lv SM, Wang JW, Sun B, Li Y, Liao ZX. Discovery of Chromane-6-Sulfonamide Derivative as a Potent, Selective, and Orally Available Novel Retinoic Acid Receptor-Related Orphan Receptor γt Inverse Agonist. J Med Chem 2021; 64:16106-16131. [PMID: 34723528 DOI: 10.1021/acs.jmedchem.1c01436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine that plays a dominant role in inflammation, autoimmunity, and host defense. RORγt is a key transcription factor mediating T helper 17 (Th17) cell differentiation and IL-17 production, which is able to activate CD8+ T cells and elicit antitumor efficacy. A series of sulfonamide derivatives as novel RORγt inverse agonists were designed and synthesized. Using GSK2981278 (phase II) as a starting point, we engineered structural modifications that significantly improved the activity and pharmacokinetic profile. In animal studies, oral administration of compound d3 showed a robust and dose-dependent inhibition of the IL-17A cytokine expression in a mouse imiquimod-induced skin inflammation model. Docking analysis of the binding mode revealed that the compound d3 occupied the active pocket suitably. Thus, compound d3 was selected as a clinical compound for the treatment of Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
| | - Mei Su
- Jiangsu Carefree Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Qiu Jin
- Jiangsu Carefree Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Wei Wang
- Jiangsu Carefree Pharmaceutical Co., Ltd., Nanjing 210042, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li Z, Liu T, He X, Bai C. The evolution paths of some reprehensive scaffolds of RORγt modulators, a perspective from medicinal chemistry. Eur J Med Chem 2021; 228:113962. [PMID: 34776280 DOI: 10.1016/j.ejmech.2021.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The ligand binding domain (LBD) of retinoid-related orphan nuclear receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to cure autoimmune diseases via modulating the IL-17 and IL-22 production by Th17 cells. Diverse chemical scaffolds of these small molecules have been discovered by multiple groups with methods such as high throughput screening (HTS) and virtual screening. These different scaffolds are further developed by medicinal chemists to afford lead compounds the best of which enter clinical trials. In this review, we summarize these chemical scaffolds and their evolution paths according to the groups in which they have been discovered or studied. We combine the data of the chemistry, biological assays and structural biology of each chemical scaffold, in order to afford insight to develop new RORγt modulators with higher potency, less toxicity and elucidated working mechanism.
Collapse
Affiliation(s)
- Zhuohao Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
14
|
Sun N, Xie Q, Dang Y, Wang Y. Agonist Lock Touched and Untouched Retinoic Acid Receptor-Related Orphan Receptor-γt (RORγt) Inverse Agonists: Classification Based on the Molecular Mechanisms of Action. J Med Chem 2021; 64:10519-10536. [PMID: 34264059 DOI: 10.1021/acs.jmedchem.0c02178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoic acid receptor-related orphan receptor-gamma-t (RORγt) is a potential drug target for autoimmune diseases with a clear biological mechanism in the Th17/IL-17 pathway. The "agonist lock", which is formed by residues His479-Tyr502-Phe506 in RORγt, makes H12 tightly contact H11 in a suitable conformation for coactivator binding and, thus, is related to RORγt transcriptional activation. The inverse agonism of RORγt is complex because not all RORγt inverse agonists directly break the agonist lock to interfere with coactivator recruitment and the transcription of RORγt. Here, we analyze the complex structures, binding modes, and biological activities of various RORγt inverse agonists and classify them as "agonist lock touched" and "agonist lock untouched" RORγt inverse agonists according to whether they infringe on the agonist lock directly or not. We aim at providing a comprehensive review and insights into drug discovery of RORγt inverse agonists.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Fudan Zhangjiang Institute, Shanghai 201203, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Centre for Novel Target and Therapeutic Intervention, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
15
|
Abstract
RORγt is a nuclear receptor associated with several diseases. Various synthetic ligands have been developed that target the canonical orthosteric or a second, allosteric pocket of RORγt. We show that orthosteric and allosteric ligands can simultaneously bind to RORγt and that their potency is positively influenced by the other ligand, a phenomenon called cooperative dual ligand binding. The mechanism behind cooperative binding in proteins is poorly understood, primarily due to the lack of structural data. We solved 12 crystal structures of RORγt, simultaneously bound to various orthosteric and allosteric ligands. In combination with molecular dynamics, we reveal a mechanism responsible for the cooperative binding behavior. Our comprehensive structural studies provide unique insights into how cooperative binding occurs in proteins. Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.
Collapse
|
16
|
Nakajima R, Oono H, Kumazawa K, Ida T, Hirata J, White RD, Min X, Guzman-Perez A, Wang Z, Symons A, Singh SK, Mothe SR, Belyakov S, Chakrabarti A, Shuto S. Discovery of 6-Oxo-4-phenyl-hexanoic acid derivatives as RORγt inverse agonists showing favorable ADME profile. Bioorg Med Chem Lett 2021; 36:127786. [PMID: 33493627 DOI: 10.1016/j.bmcl.2021.127786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 01/01/2023]
Abstract
The retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt), which is a promising therapeutic target for immune diseases, is a major transcription factor of genes related to psoriasis pathogenesis, such as interleukin (IL)-17A, IL-22, and IL-23R. Inspired by the co-crystal structure of RORγt, a 6-oxo-4-phenyl-hexanoic acid derivative 6a was designed, synthesized, and identified as a ligand of RORγt. The structure-activity relationship (SAR) studies in 6a, which focus on the improvement of its membrane permeability profile by introducing chlorine atoms, led to finding 12a, which has a potent RORγt inhibitory activity and a favorable pharmacokinetic profile.
Collapse
Affiliation(s)
- Ryota Nakajima
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan.
| | - Hiroyuki Oono
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Keiko Kumazawa
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Tomohide Ida
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Jun Hirata
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Ryan D White
- Department of Medicinal Chemistry, Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States
| | - Xiaoshan Min
- Departments of Molecular Engineering, Amgen Discovery Research, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Angel Guzman-Perez
- Department of Medicinal Chemistry, Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States
| | - Zhulun Wang
- Departments of Molecular Engineering, Amgen Discovery Research, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Antony Symons
- Departments of Inflammation & Oncology Research Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Sanjay K Singh
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science Park III, Singapore 117525, Singapore
| | - Srinivasa Reddy Mothe
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science Park III, Singapore 117525, Singapore
| | - Sergei Belyakov
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science Park III, Singapore 117525, Singapore
| | - Anjan Chakrabarti
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science Park III, Singapore 117525, Singapore
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
17
|
Nakajima R, Oono H, Sugiyama S, Matsueda Y, Ida T, Kakuda S, Hirata J, Baba A, Makino A, Matsuyama R, White RD, Wurz RΡ, Shin Y, Min X, Guzman-Perez A, Wang Z, Symons A, Singh SK, Mothe SR, Belyakov S, Chakrabarti A, Shuto S. Discovery of [1,2,4]Triazolo[1,5- a]pyridine Derivatives as Potent and Orally Bioavailable RORγt Inverse Agonists. ACS Med Chem Lett 2020; 11:528-534. [PMID: 32292560 DOI: 10.1021/acsmedchemlett.9b00649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
The retinoic acid receptor-related orphan nuclear receptor γt (RORγt), a promising therapeutic target, is a major transcription factor of genes related to psoriasis pathogenesis such as interleukin (IL)-17A, IL-22, and IL-23R. On the basis of the X-ray cocrystal structure of RORγt with 1a, an analogue of the known piperazine RORγt inverse agonist 1, triazolopyridine derivatives of 1 were designed and synthesized, and analogue 3a was found to be a potent RORγt inverse agonist. Structure-activity relationship studies on 3a, focusing on the treatment of its metabolically unstable cyclopentyl ring and the central piperazine core, led to a novel analogue, namely, 6-methyl-N-(7-methyl-8-(((2S,4S)-2-methyl-1-(4,4,4-trifluoro-3-(trifluoromethyl)butanoyl)piperidin-4-yl)oxy)[1,2,4]triazolo[1,5-a]pyridin-6-yl)nicotinamide (5a), which exhibited strong RORγt inhibitory activity and a favorable pharmacokinetic profile. Moreover, the in vitro and in vivo evaluation of 5a in a human whole-blood assay and a mouse IL-18/23-induced cytokine expression model revealed its robust and dose-dependent inhibitory effect on IL-17A production.
Collapse
Affiliation(s)
- Ryota Nakajima
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Hiroyuki Oono
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Sakae Sugiyama
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Yohei Matsueda
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Tomohide Ida
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Shinji Kakuda
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Jun Hirata
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Atsushi Baba
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Akito Makino
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Ryo Matsuyama
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Ryan D. White
- Department of Medicinal Chemistry, Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ryan Ρ. Wurz
- Department of Medicinal Chemistry, Amgen Discovery Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States
| | - Youngsook Shin
- Department of Medicinal Chemistry, Amgen Discovery Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States
| | | | - Angel Guzman-Perez
- Department of Medicinal Chemistry, Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Sanjay K. Singh
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science
Park III, Singapore 117525
| | - Srinivasa Reddy Mothe
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science
Park III, Singapore 117525
| | - Sergei Belyakov
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science
Park III, Singapore 117525
| | - Anjan Chakrabarti
- AMRI Singapore Research Centre, Pte. Ltd., 61 Science Park Road, #05-01 The Galen, Science
Park III, Singapore 117525
| | | |
Collapse
|
18
|
Meijer FA, Doveston RG, de Vries RMJM, Vos GM, Vos AAA, Leysen S, Scheepstra M, Ottmann C, Milroy LG, Brunsveld L. Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists. J Med Chem 2019; 63:241-259. [PMID: 31821760 PMCID: PMC6956242 DOI: 10.1021/acs.jmedchem.9b01372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Retinoic acid receptor-related orphan receptor γt
(RORγt) is a nuclear receptor associated with the pathogenesis
of autoimmune diseases. Allosteric inhibition of RORγt is conceptually
new, unique for this specific nuclear receptor, and offers advantages
over traditional orthosteric inhibition. Here, we report a highly
efficient in silico-guided approach that led to the discovery of novel
allosteric RORγt inverse agonists with a distinct isoxazole
chemotype. The the most potent compound, 25 (FM26), displayed submicromolar inhibition in a coactivator recruitment
assay and effectively reduced IL-17a mRNA production in EL4 cells,
a marker of RORγt activity. The projected allosteric mode of
action of 25 was confirmed by biochemical experiments
and cocrystallization with the RORγt ligand binding domain.
The isoxazole compounds have promising pharmacokinetic properties
comparable to other allosteric ligands but with a more diverse chemotype.
The efficient ligand-based design approach adopted demonstrates its
versatility in generating chemical diversity for allosteric targeting
of RORγt.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands.,Leicester Institute of Structural and Chemical Biology and Department of Chemistry , University of Leicester , University Road , Leicester LE1 7RH , U.K
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Gaël M Vos
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Alex A A Vos
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Marcel Scheepstra
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| |
Collapse
|
19
|
Sato A, Fukase Y, Kono M, Ochida A, Oda T, Sasaki Y, Ishii N, Tomata Y, Fukumoto S, Imai YN, Uga K, Shibata A, Yamasaki M, Nakagawa H, Shirasaki M, Skene R, Hoffman I, Sang B, Snell G, Shirai J, Yamamoto S. Design and Synthesis of Conformationally Constrained RORγt Inverse Agonists. ChemMedChem 2019; 14:1917-1932. [DOI: 10.1002/cmdc.201900416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ayumu Sato
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Yoshiyuki Fukase
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Tri-Institutional Therapeutics Discovery Institute, Inc. 413 East 69th Street New York NY 10021 USA
| | - Mitsunori Kono
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Atsuko Ochida
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Tsuneo Oda
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Yusuke Sasaki
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Naoki Ishii
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Yoshihide Tomata
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Shoji Fukumoto
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Japan Tobacco Inc.Central Pharmaceutical Research Institute 1-1 Murasaki-cho Takatsuki, Osaka 569-1125 Japan
| | - Yumi N. Imai
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Chordia Therapeutics Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Keiko Uga
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Akira Shibata
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Masashi Yamasaki
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Hideyuki Nakagawa
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Mikio Shirasaki
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Robert Skene
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Isaac Hoffman
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Bi‐Ching Sang
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Gyorgy Snell
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Junya Shirai
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Cardurion Pharmaceuticals K.K. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Satoshi Yamamoto
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| |
Collapse
|
20
|
Amaudrut J, Argiriadi MA, Barth M, Breinlinger EC, Bressac D, Broqua P, Calderwood DJ, Chatar M, Cusack KP, Gauld SB, Jacquet S, Kamath RV, Kort ME, Lepais V, Luccarini JM, Masson P, Montalbetti C, Mounier L, Potin D, Poupardin O, Rouaud S, Spitzer L, Wallace CD. Discovery of novel quinoline sulphonamide derivatives as potent, selective and orally active RORγ inverse agonists. Bioorg Med Chem Lett 2019; 29:1799-1806. [DOI: 10.1016/j.bmcl.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023]
|