1
|
Braga C, Ferreira-Silva M, Corvo ML, Moreira R, Fernandes AR, Vaz J, Perry MJ. Nitroaromatic-based triazene prodrugs to target the hypoxic microenvironment in glioblastoma. RSC Med Chem 2025:d4md00876f. [PMID: 39850550 PMCID: PMC11753466 DOI: 10.1039/d4md00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025] Open
Abstract
Hypoxia is a hallmark of the glioblastoma multiforme microenvironment and represents a promising therapeutic target for cancer treatment. Herein, we report nitroaromatic-based triazene prodrugs designed for selective activation by tumoral endogenous reductases and release of the cytotoxic methyldiazonium ion via a self-immolative mechanism. While compounds bearing a 2-nitrofuran bioreductive group were more efficiently activated by nitroreductases, 4-nitrobenzyl prodrugs 1b, 1d and 1e elicited a more pronounced cytotoxic effect against LN-229 and U-87 MG glioblastoma cell lines under hypoxic conditions when compared to temozolomide (TMZ), the golden standard for glioblastoma treatment. This cytotoxic response aligns with the increased apoptosis levels in LN-229 cells and senescence induction in U-87 MG cells, promoted by prodrugs 1d and 1e, under hypoxic conditions. These results highlight the potential of these hypoxia-activated nitroaromatic-based triazene prodrugs for selective delivery of the cytotoxic methyldiazonium ion and support further optimization to provide a safer alternative for glioblastoma treatment.
Collapse
Affiliation(s)
- Cláudia Braga
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Margarida Ferreira-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, NOVA University Lisbon 2829-516 Caparica Portugal
| | - M Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Alexandra R Fernandes
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, NOVA University Lisbon 2829-516 Caparica Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon 2819-516 Caparica Portugal
| | - João Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Maria J Perry
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| |
Collapse
|
2
|
Gonçalves J, Amaral JD, Capela R, Perry MDJ, Braga C, Gaspar MM, Piedade FM, Bijlsma L, Roig A, Pinto SN, Moreira R, Florindo P, Rodrigues CMP. Necroptosis induced by ruthenium (II) complexes as mitochondrial disruptors. Cell Death Discov 2024; 10:261. [PMID: 38806468 PMCID: PMC11133381 DOI: 10.1038/s41420-024-02033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Inducing necroptosis in cancer cells has emerged as an effective strategy to overcome drug resistance. However, while organic small molecules have been extensively studied for this purpose, metal-based compounds have received relatively little attention as triggers of necroptosis. The development of ruthenium (II) hybrid compounds, particularly those containing triazene (Ru-TRZ), highlights a novel avenue for modulating necroptotic cell death. Here we show that incorporating a methyltriazene moiety, a known alkylating warhead, confers superior mitochondrial-targeting properties and enhances cell death compared to amide-containing counterparts. Ru-hybrid TRZ2 exhibits also antitumor efficacy against in vivo drug-resistant cancer cells. Mechanistically, we demonstrate that Ru-TRZ hybrids induce apoptosis. In addition, by activating downstream RIPK3-driven cell death, TRZ2 proficiently restrains normal mitochondrial function and activity, leading to cancer cell necroptosis. Finally, TRZ2 synergizes anti-proliferative activity and cell death effects induced by conventional drugs. In conclusion, Ru-TRZ2 stands as a promising ruthenium-based chemotherapeutic agent inducing necroptosis in drug resistant cancer cells.
Collapse
Affiliation(s)
- Joana Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Capela
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria de Jesus Perry
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Braga
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
| | - Fátima M Piedade
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Antoni Roig
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Halabi EA, Weissleder R. Light-Deactivated Fluorescent Probes (FLASH-Off) for Multiplexed Imaging. J Am Chem Soc 2023; 145:10.1021/jacs.3c00170. [PMID: 37018018 PMCID: PMC11853112 DOI: 10.1021/jacs.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Highly multiplexed, cyclic fluorescence imaging has advanced our understanding of the biology, evolution, and complexity of human diseases. Currently available cyclic methods still have considerable limitations including the need for long quenching times and extensive wash steps. Here, we report a new series of fluorochromes that can be efficiently inactivated by a single light pulse (∼405 nm) by means of a photo-immolating triazene linker. Upon UV-light irradiation, the rhodamines are cleaved off from the antibody conjugates and undergo a fast intramolecular spirocyclization that inherently switches off their fluorescence emission without the need to wash or add exogenous chemicals. We show that these switch-off probes are fast, highly controllable, biocompatible, and allow spatiotemporal quenching control of live and fixed samples.
Collapse
Affiliation(s)
- Elias A. Halabi
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| |
Collapse
|
4
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
5
|
Guo D, Shi W, Zou G. Suzuki Coupling of Activated Aryltriazenes for Practical Synthesis of Biaryls from Anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongsheng Guo
- School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Rd 200237 Shanghai, People's Republic of China
| | - Weijia Shi
- School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Rd 200237 Shanghai, People's Republic of China
| | - Gang Zou
- School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Rd 200237 Shanghai, People's Republic of China
| |
Collapse
|
6
|
Granada M, Mendes E, Perry MJ, Penetra MJ, Gaspar MM, Pinho JO, Serra S, António CT, Francisco AP. Sulfur Analogues of Tyrosine in the Development of Triazene Hybrid Compounds: A New Strategy against Melanoma. ACS Med Chem Lett 2021; 12:1669-1677. [PMID: 34795855 DOI: 10.1021/acsmedchemlett.1c00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the major cause of death from skin cancer. Treatment of metastatic melanoma remains an enormous challenge. In this study we developed hybrid compounds and studied their potential use in malignant melanoma chemotherapy. They were designed to act by a double mechanism of action, being composed of two pharmacophores: the tyrosine sulfur analogue 4-S-cysteaminylphenol (4-S-CAP, 10), with immunomodulatory properties and specific melanocytotoxic activity, and triazene 4, with DNA alkylating properties. The design of these compounds aims to achieve selective activation by the enzyme tyrosinase overexpressed in melanoma cells. Compounds 11a-e, 13a, and 13b were found to be excellent tyrosinase substrates (0.5 min ≤ t 1/2 ≤ 3.7 min). Furthermore, derivatives 11 and 13 were evaluated for their molecular properties, hepatotoxicity, in vivo toxicity profile, and assessment of cytotoxic activity in melanoma and non-melanoma cell lines. The results were compared with those obtained for temozolomide, a triazene used in melanoma therapy. It was discovered that the hybrids are selective and effective drugs, representing a valuable model for the development of new multitarget melanoma therapy. In particular, compound 10 may be an important component for these strategies that use a metabolic pathway of melanin synthesis. Molecular hybridization of 10 with triazenes 4 renders the hybrids (11 and 13) unexpectedly devoid of hepatotoxicity while maintaining cytotoxic activity in malignant cells.
Collapse
Affiliation(s)
- Margarida Granada
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Eduarda Mendes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Jesus Perry
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Penetra
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jacinta O. Pinho
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sofia Serra
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | - Ana Paula Francisco
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021; 26:molecules26092707. [PMID: 34063013 PMCID: PMC8124757 DOI: 10.3390/molecules26092707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.
Collapse
|
8
|
Francisco AP, Mendes E, Santos AR, Perry MJ. Anticancer Triazenes: from Bioprecursors to Hybrid Molecules. Curr Pharm Des 2020; 25:1623-1642. [PMID: 31244412 DOI: 10.2174/1381612825666190617155749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 11/22/2022]
Abstract
Triazenes are a very useful and diverse class of compounds that have been studied for their potential in the treatment of many tumors including brain tumor, leukemia and melanoma. Novel compounds of this class continue to be developed as either anticancer compounds or even with other therapeutic applications. This review focused on several types of triazenes from the simplest ones like 1,3-dialkyl-3-acyltriazenes to the more complex ones like combi-triazenes with an emphasis on how triazenes have been developed as effective antitumor agents.
Collapse
Affiliation(s)
- Ana P Francisco
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eduarda Mendes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R Santos
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Perry
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|