1
|
Takács A, Jessen M, Lajkó E, Szász Z, Kalabay M, Csámpai A, Kőhidai L. Quinine-chalcone hybrids as potent inhibitors of P-glycoprotein with apoptotic effects on EBC-1 cells. Biomed Pharmacother 2025; 187:118076. [PMID: 40267640 DOI: 10.1016/j.biopha.2025.118076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025] Open
Abstract
Chincona alkaloids extracted from the bark stem of Cinchona officinalis have been historically used to treat fever and malaria. More recently, cinchona alkaloid derivatives have been attributed to apoptotic effects in the context of cancer. Similarly, chalcones are plant-derived polyphenolic compounds with known anti-fungal, -microbial, -malarial, and -carcinogenic properties. Here, we reveal cytotoxic and antiproliferative characteristics of synthetic quinine-chalcone hybrids in human cancer cell lines. Two derivatives (AD-12 and AD-13) presented IC50 values below 2 µM in the lung squamous cell carcinoma cell line (EBC-1). Our study shows that AD-12 and AD-13 increased intracellular ROS levels and promoted caspase-3/7, and -8 activity in EBC-1 cells. These apoptotic effects were accompanied by short-term inhibition of P-gp efflux activity, while expression levels of P-gp transporters remained stable. Together, our study illustrates the potential of quinine-chalcone hybrids as novel anticancer drug candidates.
Collapse
Affiliation(s)
- Angéla Takács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | - Malin Jessen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zsófia Szász
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Márton Kalabay
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Antal Csámpai
- Institute of Chemistry, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Yang Z, Wang Y, Ablise M, Maimaiti A, Mutalipu Z, Yan T, Liu ZY, Aihaiti A. Design, synthesis, and ex vivo anti-drug resistant cervical cancer activity of novel molecularly targeted chalcone derivatives. Bioorg Chem 2024; 149:107498. [PMID: 38805911 DOI: 10.1016/j.bioorg.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 μΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 μΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.
Collapse
Affiliation(s)
- Zheng Yang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yu Wang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Aikebaier Maimaiti
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zuohelaguli Mutalipu
- Department of Gynecological Radiation Therapy Ⅱ Ward, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, Xinjiang 830011, China
| | - Tong Yan
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zheng-Ye Liu
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Aizitiaili Aihaiti
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
3
|
Liu Z, Yang Z, Ablise M. Design and synthesis of novel imidazole-chalcone derivatives as microtubule protein polymerization inhibitors to treat cervical cancer and reverse cisplatin resistance. Bioorg Chem 2024; 147:107310. [PMID: 38583249 DOI: 10.1016/j.bioorg.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 μM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/β-tubulin in cancer cells, reduced the expression of polymerized α-/β-tubulin, and increased the expression of depolymerized α-/β-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.
Collapse
Affiliation(s)
- Zhengye Liu
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zheng Yang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
4
|
Ribeiro JRL, Szemerédi N, Gonçalves BMF, Spengler G, Afonso CAM, Ferreira MJU. Nitrogen-containing andrographolide derivatives with multidrug resistance reversal effects in cancer cells. RSC Med Chem 2024; 15:1348-1361. [PMID: 38665830 PMCID: PMC11042158 DOI: 10.1039/d3md00711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
Multidrug resistance (MDR) remains a challenging issue in cancer treatment. Aiming at finding anticancer agents to overcome MDR, the triacetyl derivative (2) of the labdane diterpenoid lactone andrographolide (1) underwent the Michael-type addition reaction followed by elimination, yielding twenty-three new derivatives, bearing nitrogen-containing substituents (3-25). Their structures were assigned, mainly, by 1D and 2D NMR experiments. The MDR reversal potential of compounds 1-25 was assessed, by functional and chemosensitivity assays, using resistant human ABCB1-gene transfected L5178Y mouse lymphoma cells as a model. Several derivatives exhibited remarkable P-glycoprotein (P-gp) inhibitory ability. Compounds 13 and 20, bearing thiosemicarbazide moieties, were the most active exhibiting a strong MDR reversal effect at 2 μM. Some compounds showed selectivity towards the resistant cells, with compound 5 exhibiting a collateral sensitivity effect associated with significant antiproliferative activity (IC50 = 5.47 ± 0.22 μM). Moreover, all selected compounds displayed synergistic interaction with doxorubicin, with compound 3 being the most active. In the ATPase assay, selected compounds exhibited characteristics of P-gp inhibitors.
Collapse
Affiliation(s)
- Joana R L Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisbon Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged Semmelweis utca 6 H-6725 Szeged Hungary
| | - Bruno M F Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisbon Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged Semmelweis utca 6 H-6725 Szeged Hungary
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisbon Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisbon Portugal
| |
Collapse
|
5
|
Zhao X, Di J, Luo D, Vaishnav Y, Kamal, Nuralieva N, Verma D, Verma P, Verma S. Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies. Bioorg Chem 2024; 143:106997. [PMID: 38029569 DOI: 10.1016/j.bioorg.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Nargiza Nuralieva
- School of Education, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Deepti Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Payal Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shekhar Verma
- University College of Pharmacy Raipur, Chhattisgarh Swami Vivekananda Technical University, Newai, Bhilai 491107, Chhattisgarh, India.
| |
Collapse
|
6
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Yang Z, Liu ZY, Ablise M, Maimaiti A, Mutalipu Z, Alimujiang Y, Aihaiti A. Design, Synthesis, and Anti-Cervical Cancer and Reversal of Tumor Multidrug Resistance Activity of Novel Nitrogen-Containing Heterocyclic Chalcone Derivatives. Molecules 2023; 28:molecules28114537. [PMID: 37299013 DOI: 10.3390/molecules28114537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
This study involved the design and synthesis of 21 new nitrogen-containing heterocyclic chalcone derivatives utilizing the active substructure splicing principle, with glycyrrhiza chalcone serving as the lead compound. The targets of these derivatives were VEGFR-2 and P-gp, and their efficacy against cervical cancer was evaluated. Following preliminary conformational analysis, compound 6f ((E)-1-(2-hydroxy-5-((4-hydroxypiperidin-1-yl)methyl)-4-methoxyphenyl)-3-(4-((4-methylpiperidin-1-yl)methyl)phenyl)prop-2-en-1-one) exhibited significant antiproliferative activity against human cervical cancer cells (HeLa and SiHa) with IC50 values of 6.52 ± 0.42 and 7.88 ± 0.52 μM, respectively, when compared to other compounds and positive control drugs. Additionally, this compound demonstrated lower toxicity towards human normal cervical epithelial cells (H8). Subsequent investigations have demonstrated that 6f exerts an inhibitory impact on VEGFR-2, as evidenced by its ability to impede the phosphorylation of p-VEGFR-2, p-PI3K, and p-Akt proteins in HeLa cells. This, in turn, results in the suppression of cell proliferation and the induction of both early and late apoptosis in a concentration-dependent manner. Furthermore, 6f significantly curtails the invasion and migration of HeLa cells. In addition, 6f had an IC50 of 7.74 ± 0.36 μM against human cervical cancer cisplatin-resistant HeLa/DDP cells and a resistance index (RI) of 1.19, compared to 7.36 for cisplatin HeLa cells. The combination of 6f and cisplatin resulted in a significant reduction in cisplatin resistance in HeLa/DDP cells. Molecular docking analyses revealed that 6f exhibited binding free energies of -9.074 and -9.823 kcal·mol-1 to VEGFR-2 and P-gp targets, respectively, and formed hydrogen bonding forces. These findings suggest that 6f has potential as an anti-cervical cancer agent and may reverse cisplatin-resistant activity in cervical cancer. The introduction of the 4-hydroxy piperidine and 4-methyl piperidine rings may contribute to its efficacy, and its mechanism of action may involve dual inhibition of VEGFR-2 and P-gp targets.
Collapse
Affiliation(s)
- Zheng Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zheng-Ye Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mourboul Ablise
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | | | | | | | | |
Collapse
|
8
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
9
|
Wu J, Li Y, He Q, Yang X. Exploration of the Use of Natural Compounds in Combination with Chemotherapy Drugs for Tumor Treatment. Molecules 2023; 28:molecules28031022. [PMID: 36770689 PMCID: PMC9920618 DOI: 10.3390/molecules28031022] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, chemotherapy is the main treatment for tumors, but there are still problems such as unsatisfactory chemotherapy results, susceptibility to drug resistance, and serious adverse effects. Natural compounds have numerous pharmacological activities which are important sources of drug discovery for tumor treatment. The combination of chemotherapeutic drugs and natural compounds is gradually becoming an important strategy and development direction for tumor treatment. In this paper, we described the role of natural compounds in combination with chemotherapeutic drugs in synergizing, reducing drug resistance, mitigating adverse effects and related mechanisms, and providing new insights for future oncology research.
Collapse
Affiliation(s)
- Jianping Wu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunheng Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: ; Tel.: +86-571-8820-8076
| |
Collapse
|
10
|
Abou‐Zied HA, Beshr EAM, Gomaa HAM, Mostafa YA, Youssif BGM, Hayallah AM, Abdel‐Aziz M. Discovery of new cyanopyridine/chalcone hybrids as dual inhibitors of EGFR/BRAF
V600E
with promising antiproliferative properties. Arch Pharm (Weinheim) 2022; 356:e2200464. [PMID: 36526595 DOI: 10.1002/ardp.202200464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.
Collapse
Affiliation(s)
- Hesham A. Abou‐Zied
- Medicinal Chemistry Department, Faculty of Pharmacy Deraya University Minia Egypt
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Sphinx University Assiut Egypt
| | - Mohamed Abdel‐Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| |
Collapse
|
11
|
Reversal of multidrug resistance by Fissistigma latifolium–derived chalconoid 2-hydroxy-4,5,6-trimethoxydihydrochalcone in cancer cell lines overexpressing human P-glycoprotein. Biomed Pharmacother 2022; 156:113832. [DOI: 10.1016/j.biopha.2022.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
|
12
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Laser-responsive multi-functional nanoparticles for efficient combinational chemo-photodynamic therapy against breast cancer. Colloids Surf B Biointerfaces 2022; 216:112574. [PMID: 35623257 DOI: 10.1016/j.colsurfb.2022.112574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
Herein, novel laser-responsive multi-functional nanoparticles (NPs-Lip@PTX/CyA/Ce6) were fabricated with bovine serum albumins (BSA) based nanoparticles, which simultaneously carried chemotherapeutic drug paclitaxel (PTX) and P-gp inhibitor cyclosporin A (CyA), as core and photosensitizer agent Chlorin e6 (Ce6) loaded Tf-modified liposomal bilayer as shell. NPs-Lip@PTX/CyA/Ce6 exhibited apparent core-shell structure morphology with particle size of 160.9 ± 1.7 nm and zeta potential of - 26.7 ± 0.6 mV, indicating their excellent stability in aqueous solution. Besides, NPs-Lip@PTX/CyA/Ce6 possessed laser-responsive release profiles upon laser irradiation at specific wavelength, which was favor to exert efficient combinatorial chemo-photodynamic therapy and effectively reverse the multiple drug resistance (MDR). Under laser irradiation, as expected, NPs-Lip@PTX/CyA/Ce6 demonstrated superb intracellular ROS productivity and fantastic in vitro and in vivo anti-cancer therapy effect but absent of systemic toxicity. In conclusion, the nano-drug delivery system would be prospectively applied in clinic as resultful therapeutic tactic for investing compositional chemo-photodynamic therapy synergistically.
Collapse
|
14
|
Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ye Q, Jiang Z, Xie Y, Xu Y, Ye Y, Ma L, Pei L. MY11 exerts antitumor effects through activation of the NF-κB/PUMA signaling pathway in breast cancer. Invest New Drugs 2022; 40:922-933. [PMID: 35759135 PMCID: PMC9395444 DOI: 10.1007/s10637-022-01272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Breast cancer is the most common malignancy in women worldwide, and the discovery of new effective breast cancer therapies with lower toxicity is still needed. We screened a series of chalcone derivatives and found that MY11 ((E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(4-piperazinylphenyl) prop-2-en-1-one) had the strongest anti-breast cancer activity. MY11 inhibited the growth of MDA-MB-231 and MCF-7 breast cancer cells by arresting the cell cycle and promoting apoptosis, through regulation of the cell cycle and apoptosis-related proteins. PDTC (Pyrrolidinedithiocarbamate ammonium), a specific inhibitor of the NF-κB pathway, abolished the inhibitory effect of MY11 treatment. NF-κB has been shown to regulate PUMA-dependent apoptosis. Our in vitro studies demonstrated that MY11 promoted breast cancer cell apoptosis by activating the NF-κB/PUMA/mitochondrial apoptosis pathway (including Bcl-2, Bax, and Caspase-9). MY11 also inhibited tumor growth in an orthotopic breast cancer mouse model by inducing apoptosis through the NF-κB signaling pathway, importantly, with minimal toxicity. In addition, MY11 was found by docking analysis to bind to p65, which might enhance the stability of the p65 protein. Taken together, our findings indicate that MY11 exerts a significant anticancer effect in breast cancer and that it may be a potential candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Qun Ye
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ziwei Jiang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuanhong Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiyi Ye
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lixia Pei
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
16
|
Wang S, Wang SQ, Teng QX, Lei ZN, Chen ZS, Chen XB, Liu HM, Yu B. Discovery of the Triazolo[1,5- a]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance. J Med Chem 2021; 64:16187-16204. [PMID: 34723530 DOI: 10.1021/acs.jmedchem.1c01498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo[1,5-a]pyrimidine derivative WS-898 as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC50 = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. WS-898 inhibited the efflux function of ABCB1, thus leading to decreased efflux and increased intracellular PTX concentration in SW620/Ad300 cells. The cellular thermal shift assay indicated direct engagement of WS-898 to ABCB1. Furthermore, WS-898 stimulated the ATPase activity of ABCB1 but had minimal effects on cytochrome P450 3A4 (CYP3A4). Importantly, WS-898 increased PTX sensitization in vivo without obvious toxicity. The results suggest that WS-898 is a highly effective triazolo[1,5-a]pyrimidine-based ABCB1 inhibitor and shows promise in reversing ABCB1-mediated PTX resistance.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
18
|
Bai Z, Zhou Q, Zhu H, Ye X, Wu P, Ma L. QTMP, a Novel Thiourea Polymer, Causes DNA Damage to Exert Anticancer Activity and Overcome Multidrug Resistance in Colorectal Cancer Cells. Front Oncol 2021; 11:667689. [PMID: 34123833 PMCID: PMC8194350 DOI: 10.3389/fonc.2021.667689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, and multidrug resistance (MDR) severely restricts the effectiveness of various anticancer drugs. Therefore, the development of novel anticancer drugs for the treatment of CRC patients with MDR is necessary. Quaternized thiourea main-chain polymer (QTMP) is a self-assembled nanoparticle with good water solubility. Notably, QTMP is not a P-glycoprotein (P-gp) substrate, and it exhibits potent cytotoxic activity against CRC cells, including HCT116/DDP and P-gp-mediated multidrug-resistant Caco2 cells. QTMP also exhibits a strong anticancer activity against SW480 cells in vivo. Interestingly, reactive oxygen species (ROS) and reactive nitrogen species (RNS) production were increased in a concentration-dependent manner in QTMP-treated HCT116, SW480 and Caco2 cells. Importantly, QTMP causes DNA damage in these CRC cells via direct insertion into the DNA or regulation of ROS and/or RNS production. QTMP also induces caspase-dependent apoptosis via overproduction of ROS and RNS. Therefore, QTMP is a promising anticancer therapeutic agent for patients with CRC, including those cancer cells with P-gp-mediated MDR. The present study also indicates that the design and synthesis of anticancer drugs based on thiourea polymers is promising and valuable, thereby offering a new strategy to address MDR, and provides reference resources for further investigations of thiourea polymers.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Zhou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Huayun Zhu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pingping Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Rioux B, Pinon A, Gamond A, Martin F, Laurent A, Champavier Y, Barette C, Liagre B, Fagnère C, Sol V, Pouget C. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem 2021; 222:113586. [PMID: 34116328 DOI: 10.1016/j.ejmech.2021.113586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
The aim of this study was to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. Indeed, it is well-known that polyamine transport system is upregulated in tumor cells. 3',4,4',5'-tetramethoxychalcone was selected as parent chalcone since it was found to be an efficient anti-proliferative agent on various cancer cells. A series of five chalcone-polyamine conjugates was obtained using the 4-bromopropyloxy-3',4',5'-trimethoxychalcone as a key intermediate. Chalcone core and polyamine tails were fused through an amine bond. These conjugates were found to possess a marked in vitro antiproliferative effect against colorectal (HT-29 and HCT-116) and prostate cancer (PC-3 and DU-145) cell lines. The most active conjugate (compound 8b) was then chosen for further biological evaluations to elucidate mechanisms responsible for its antiproliferative activity. Investigations on cell cycle distribution revealed that this conjugate can prevent the proliferation of human colorectal and prostate cancer cells by blocking the cell cycle at the G1 and G2 phase, respectively. Flow cytometry analysis revealed a sub-G1 peak, characteristic of apoptotic cell population and our inquiries highlighted apoptosis induction at early and later stages through several pro-apoptotic markers. Therefore, this chalcone-N1-spermidine conjugate could be considered as a promising agent for colon and prostatic cancer adjuvant therapy.
Collapse
Affiliation(s)
- Benjamin Rioux
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aline Pinon
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Gamond
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Frédérique Martin
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Laurent
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Yves Champavier
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France; Université de Limoges, BISCEm NMR Platform, GEIST, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Caroline Barette
- Université Grenoble Alpes, CEA, INSERM, IRIG, BGE U1038, Genetics & Chemogenomics, 17 Avenue des Martyrs, Grenoble, 38054, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Catherine Fagnère
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Christelle Pouget
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France.
| |
Collapse
|
20
|
Wang M, Chen W, Chen J, Yuan S, Hu J, Han B, Huang Y, Zhou W. Abnormal saccharides affecting cancer multi-drug resistance (MDR) and the reversal strategies. Eur J Med Chem 2021; 220:113487. [PMID: 33933752 DOI: 10.1016/j.ejmech.2021.113487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Clinically, chemotherapy is the mainstay in the treatment of multiple cancers. However, highly adaptable and activated survival signaling pathways of cancer cells readily emerge after long exposure to chemotherapeutics drugs, resulting in multi-drug resistance (MDR) and treatment failure. Recently, growing evidences indicate that the molecular action mechanisms of cancer MDR are closely associated with abnormalities in saccharides. In this review, saccharides affecting cancer MDR development are elaborated and analyzed in terms of aberrant aerobic glycolysis and its related enzymes, abnormal glycan structures and their associated enzymes, and glycoproteins. The reversal strategies including depletion of ATP, circumventing the original MDR pathway, activation by or inhibition of sugar-related enzymes, combination therapy with traditional cytotoxic agents, and direct modification on the sugar moiety, are ultimately proposed. It follows that abnormal saccharides have a significant effect on cancer MDR development, providing a new perspective for overcoming MDR and improving the outcome of chemotherapy.
Collapse
Affiliation(s)
- Meizhu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Wenming Chen
- Department of Pharmaceutical Production Center, The First Hospital of Hunan University of Chinese Medicine, 95, Shaoshan Rd, Changsha, Hunan, 41007, China
| | - Jiansheng Chen
- College of Horticulture, South China Agricultural University, 483, Wushan Rd, Guangzhou, Guangdong province, 510642, China
| | - Sisi Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, Anhui, China
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, 483, Wushan Rd, Guangzhou, Guangdong province, 510642, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China.
| |
Collapse
|
21
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
22
|
Shinde RA, Adole VA, Jagdale BS, Desale BS. Synthesis, antibacterial and computational studies of Halo Chalcone hybrids from 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Wang B, Liu S, Huang W, Ma M, Chen X, Zeng W, Liang K, Wang H, Bi Y, Li X. Design, synthesis, and biological evaluation of hederagenin derivatives with improved aqueous solubility and tumor resistance reversal activity. Eur J Med Chem 2020; 211:113107. [PMID: 33360797 DOI: 10.1016/j.ejmech.2020.113107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) has become a major obstacle to malignancies treatment by chemotherapeutic drugs, therefore, it is important to develop MDR reversal agents with high activity. We have previously found that the hederagenin (HD) derivative HBQ showed good tumor MDR reversal activity in vitro and in vivo but had poor solubility. In this study, to enhance the aqueous solubility and tumor MDR reversal activity of HBQ, three series of HD derivatives were designed and synthesized. Nitrogen-containing heterocyclic-substituted, PEGylated, and ring-A substituted derivatives significantly reversed the MDR phenotype of KBV (multidrug-resistant oral epidermoid carcinoma) cells toward paclitaxel at a concentration of 10 μM in MTT assays. The PEGylated derivatives 10c-10e had increased aqueous solubility compared with HBQ by 18-657 fold, while maintaining tumor MDR reversal activity. The most in vitro active compound 10c possessed good chemical stability to an esterase over 24 h and enhanced the sensitivity of KBV cells to paclitaxel and vincristine with IC50 values of 4.58 and 0.79 nM, respectively. Mechanism studies indicated that compound 10c increased the accumulation of P-glycoprotein (P-gp) substrates rhodamine 123 and Flutax1 in KBV cells and MCF-7T (paclitaxel-resistant breast carcinoma) cells, that is to say, compound 10c exerted the reversal effect of tumor MDR by inhibiting the efflux function of P-gp. Finally, the structure-activity relationships were further investigated by analyzing the relationship between structure and tumor MDR reversal activity of HD derivatives. This study highlights the potential of PEGylated HD derivatives such as compound 10c for the development of tumor MDR reversal agents and provides information for the further improvement of the aqueous solubility and tumor MDR reversal activity of HD derivatives in the future.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wentao Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengxin Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaoqian Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenxuan Zeng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kaicheng Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
24
|
González LA, Upegui YA, Rivas L, Echeverri F, Escobar G, Robledo SM, Quiñones W. Effect of substituents in the A and B rings of chalcones on antiparasite activity. Arch Pharm (Weinheim) 2020; 353:e2000157. [PMID: 33252148 DOI: 10.1002/ardp.202000157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Chalcones are a group of natural products with many recognized biological activities, including antiparasitic activity. Although a lot of chalcones have been synthetized and assayed against parasites, the number of structural features known to be involved in this biological property is small. Thus, in the present study, 21 chalcones were synthesized to determine the effect of substituents in the A and B rings on the activity against Leishmania braziliensis, Trypanosoma cruzi, and Plasmodium falciparum. The compounds were active against L. braziliensis in a structure-dependent manner. Only one compound was very active against T. cruzi, but none of them had a significant antiplasmodial activity. The electron-donating substituents in ring B and the hydrogen bonds at C-2' with carbonyl affect the antiparasitic activity.
Collapse
Affiliation(s)
- Luis A González
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Yulieth A Upegui
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia.,PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Luis Rivas
- Grupo de Investigación en Péptidos Antibióticos Eucarióticos, Centro de Investigaciones Biológicas, Madrid, España
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Gustavo Escobar
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
25
|
Shi X, Zhao Y, Zhou L, Yin H, Liu J, Ma L. Design, Synthesis and Biological Evaluation of Dimethyl Cardamonin (DMC) Derivatives as P-glycoprotein-mediated Multidrug Resistance Reversal Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200531162015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
P-glycoprotein (P-gp) has been regarded as an important factor in the multidrug
resistance (MDR) of tumor cells within the last decade, which can be solved by inhibiting Pgp
to reverse MDR. Thus, it is an effective strategy to develop inhibitor of P-gp.
Objective:
In this study, the synthesis of a series of derivatives had been carried out by bioisosterism
design on the basis of Dimethyl Cardamonin (DMC). Subsequently, we evaluated their reversal activities
as potential P-glycoprotein (P-gp)-mediated Multidrug Resistance (MDR) agents.
Methods:
Dimethyl cardamonin derivatives were synthesized from acetophenones and the corresponding
benzaldehydes in the presence of 40% KOH by Claisen-Schmidt reaction. Their cytotoxicity
and reversal activities in vitro were assessed with MTT. Moreover, the compound B4 was evaluated
by Doxorubicin (DOX) accumulation, Western blot and wound-healing assays deeply.
Results and Conclusion:
The results showed that compounds B2, B4 and B6 had the potency of
MDR reversers with little intrinsic cytotoxicity. Meanwhile, these compounds also demonstrated the
capability to inhibit MCF-7 and MCF-7/DOX cells migration. Besides, the most compound B4 was
selected for further study, which promoted the accumulation of DOX in MCF-7/DOX cells and inhibited
the expressionof P-gp at protein levels.
Conclusion:
The above findings may provide new insights for the research and development of Pgp-
mediated MDR reversal agents.
Collapse
Affiliation(s)
- Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuyu Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Licheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Hung CC, Chen CY, Wu YC, Huang CF, Huang YC, Chen YC, Chang CS. Synthesis and biological evaluation of thiophenylbenzofuran derivatives as potential P-glycoprotein inhibitors. Eur J Med Chem 2020; 201:112422. [DOI: 10.1016/j.ejmech.2020.112422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
28
|
M. F. Gonçalves B, S. P. Cardoso D, U. Ferreira MJ. Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators. Molecules 2020; 25:E3364. [PMID: 32722234 PMCID: PMC7435859 DOI: 10.3390/molecules25153364] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the main limitations for chemotherapy success. Numerous mechanisms are behind the MDR phenomenon wherein the overexpression of the ATP-binding cassette (ABC) transporter proteins P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 1 (MRP1) is highlighted as a prime factor. Natural product-derived compounds are being addressed as promising ABC transporter modulators to tackle MDR. Flavonoids and terpenoids have been extensively explored in this field as mono or dual modulators of these efflux pumps. Nitrogen-bearing moieties on these scaffolds were proved to influence the modulation of ABC transporters efflux function. This review highlights the potential of semisynthetic nitrogen-containing flavonoid and terpenoid derivatives as candidates for the design of effective MDR reversers. A brief introduction concerning the major role of efflux pumps in multidrug resistance, the potential of natural product-derived compounds in MDR reversal, namely natural flavonoid and terpenoids, and the effect of the introduction of nitrogen-containing groups are provided. The main modifications that have been performed during last few years to generate flavonoid and terpenoid derivatives, bearing nitrogen moieties, such as aliphatic, aromatic and heterocycle amine, amide, and related functional groups, as well as their P-gp, MRP1 and BCRP inhibitory activities are reviewed and discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/metabolism
- Drug Resistance, Multiple/drug effects
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Nitrogen/chemistry
- Terpenes/chemistry
- Terpenes/pharmacology
Collapse
Affiliation(s)
| | | | - Maria-José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (B.M.F.G.); (D.S.P.C.)
| |
Collapse
|
29
|
Corsini E, Facchetti G, Esposito S, Maddalon A, Rimoldi I, Christodoulou MS. Antiproliferative effects of chalcones on T cell acute lymphoblastic leukemia-derived cells: Role of PKCβ. Arch Pharm (Weinheim) 2020; 353:e2000062. [PMID: 32394529 DOI: 10.1002/ardp.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
In this study, a series of 20 chalcone derivatives was synthesized, and their antiproliferative activity was tested against the human T cell acute lymphoblastic leukemia-derived cell line, CCRF-CEM. On the basis of the structural features of the most active compounds, a new library of chalcone derivatives, according to the structure-activity relationship design, was synthesized, and their antiproliferative activity was tested against the same cancer cell line. Furthermore, four of these derivatives (compounds 3, 4, 8, 28), based on lower IC50 values (between 6.1 and 8.9 μM), were selected for further investigation regarding the modulation of the protein expression of RACK1 (receptor for activated C kinase), protein kinase C (PKC)α and PKCβ, and their action on the cell cycle level. The cell cycle analysis indicated a block in the G0/G1 phase for all four compounds, with a statistically significant decrease in the percentage of cells in the S phase, with no indication of apoptosis (sub-G0/G1 phase). Compounds 4 and 8 showed a statistically significant reduction in the expression of PKCα and an increase in PKCβ, which together with the demonstration of an antiproliferative role of PKCβ, as assessed by treating cells with a selective PKCβ activator, indicated that the observed antiproliferative effect is likely to be mediated through PKCβ induction.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| | - Sara Esposito
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| | - Michael S Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
30
|
MAY, a novel tubulin inhibitor, induces cell apoptosis in A549 and A549/Taxol cells and inhibits epithelial-mesenchymal transition in A549/Taxol cells. Chem Biol Interact 2020; 323:109074. [DOI: 10.1016/j.cbi.2020.109074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
|
31
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|