1
|
Hou F, Yao Y, Wei Y, Wang Y, Cao Y, Liu X, Zheng L, Zhang Q, Jiao Y, Chen Y, Meng Y, Sun Y, Wu Y, Wang J, Wang J, Wu Z, Zhang K, Wei M, Yang G. Design and discovery of new selective and potent VEGF receptor 2 tyrosine kinase inhibitors. Bioorg Med Chem 2023; 91:117404. [PMID: 37429211 DOI: 10.1016/j.bmc.2023.117404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
A series of novel substituted 4-anilinoquinazolines and their related compounds were designed and prepared by 3D modeling as potential inhibitors of VEGFR-2. Evaluation of VEGFR inhibitory activities suggested that compound I10 was a more potent (IC50 = 0.11 nM) VEGFR-2 inhibitor than most of the listed drugs. Kinase panel assays demonstrated that compound I10 was the selective VEGFR-2 inhibitor. The prediction of 3D modeling unveiled a unique binding mode of this lead compound to VEGFR-2. Compound I10 exhibited remarkable anti-angiogenesis and anti-proliferation in HUVEC at low nanomolar concentrations. PK studies indicated that the lead compound possessed adequate oral bioavailability in various species. In vivo subcutaneous tumor model demonstrated that oral administration of I10 demonstrated potent efficacy in inhibiting tumor growth and angiogenesis. All these results suggested compound I10 is a potential drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Fei Hou
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yuhong Yao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yubo Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yangzi Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Xinqiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Liting Zheng
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Qingqing Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yue Jiao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yukun Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yue Meng
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yue Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yanjie Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China.
| | - Junfeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China.
| | - Zhou Wu
- China Resources Biopharmaceutical Co., Ltd., Beijing 100100, PR China.
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
(4-Picolylamino)-17β-Estradiol derivative and analogues induce apoptosis with death receptor trail R2/DR5 in MCF-7. Chem Biol Interact 2023; 369:110286. [PMID: 36460128 DOI: 10.1016/j.cbi.2022.110286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
In order to discover more effective and less toxic drugs in the field of anti-tumor, the backbone structure of 17β-estradiol was modified, and 11 target compounds were synthesized. Compounds 5 and 10, which exhibited better anti-tumor activity and higher selectivity (more than 10-fold), were chosen for further biological investigation. Flow cytometry results indicated that 5 and 10 could arrest MCF-7 cells in the G2 phase and induce apoptosis. Immunohistochemical analysis revealed that 5 and 10 could bind to the estradiol receptor alpha in MCF-7 cells. Western blotting and real-time PCR assays were performed to detect the effects of compounds on apoptosis-related targets at the protein and gene levels. These results showed that both 5 and 10 could dosed-dependently increase the expression of Apaf-1, Bax, caspase-3,8,9 and reduce the expression levels of the anti-apoptotic factors Bcl-2 and Bcl-xL. Besides, the Human apoptosis array assay demonstrated the expression level of death receptor Trail R2/DR5 was upregulated obviously while the expression of TNF R1, IAPs and Hsp27/60/70 were downregulated. On the whole, 5 induced MCF-7 cell death through the endogenous pathway in mitochondria and the exogenous pathway with death receptor Trail R2/DR5.
Collapse
|
3
|
Tasso B, Spallarossa A, Russo E, Brullo C. The Development of BTK Inhibitors: A Five-Year Update. Molecules 2021; 26:molecules26237411. [PMID: 34885993 PMCID: PMC8659154 DOI: 10.3390/molecules26237411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "BTK" and "BTK inhibitors" as keywords.
Collapse
|
4
|
Li Z, Liu F, Wu S, Ding S, Chen Y, Liu J. Research progress on the drug resistance of ALK kinase inhibitors. Curr Med Chem 2021; 29:2456-2475. [PMID: 34365942 DOI: 10.2174/0929867328666210806120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fusion and rearrangement of the ALK gene of anaplastic lymphoma kinase is an important cause of a variety of cancers, including non-small cell lung cancer (NSCLC) and anaplastic large cell lymphoma (ALCL). Since crizotinib first came out, many ALK inhibitors have come out one after another, but the fatal flaw in each generation of ALK inhibitors is the body's resistance to drugs. Therefore, how to solve the problem of drug resistance has become an important bottleneck in the application and development of ALK inhibitors. This article briefly introduces the drug resistance of ALK inhibitors and the modified forms of ALK inhibitors, which provide a theoretical basis for solving the drug resistance of ALK inhibitors and the development of a new generation of ALK kinase inhibitors. METHOD We use relevant databases to query relevant literature, and then screen and select based on the relevance and cutting edge of the content. We then summarize and analyze appropriate articles, integrate and classify relevant studies, and finally write articles based on topics. RESULT This article starts with the problem of ALK resistance, first introduces the composition of ALK kinase, and then introduces the problem of resistance of ALK kinase inhibitors. Later, the structural modification to overcome ALK resistance was introduced, and finally, the method to overcome ALK resistance was introduced. CONCLUSION This article summarizes the resistance pathways of ALK kinase inhibitors, and integrates the efforts made to overcome the structural modification of ALK resistance problems, and hopes to provide some inspiration for the development of the next generation of ALK kinase inhibitors.
Collapse
Affiliation(s)
- Zhen Li
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Fang Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| |
Collapse
|
5
|
Zhai Z, Li R, Bai X, Ning X, Lin Z, Zhao X, Jin Y, Yin Y. Design, synthesis and biological evaluation of novel dithiocarbamate-substituted diphenylaminopyrimidine derivatives as BTK inhibitors. Bioorg Med Chem 2019; 27:4124-4142. [DOI: 10.1016/j.bmc.2019.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
|