1
|
Wang J, Yan W, Cheng X, Tong Y, Wang S, Jin C. The Intestinal Barrier Protective Effect of Indole Aldehyde Derivatives on Acute Toxoplasma gondii Infection. Molecules 2024; 29:5024. [PMID: 39519664 PMCID: PMC11547840 DOI: 10.3390/molecules29215024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Toxoplasmosis, a zoonotic infection caused by Toxoplasma gondii (T. gondii), poses a significant risk to human health and public safety. Despite the availability of clinical treatments, none effectively mitigate the intestinal barrier damage, which is the primary defense against T. gondii invasion. This study introduced aldehyde groups into the indole scaffold of a peptide-like structure to investigate the protective effects of these indole aldehyde derivatives on the intestinal barrier in mice with acute T. gondii infection. This approach leveraged the propensity of peptides and aldehyde groups to form hydrogen bonds. We synthesized a range of indole derivatives using the Vilsmeier-Haack reaction and evaluated their intestinal barrier protective effects both in vitro and in vivo. Our findings revealed that indole derivatives A1 (1-Formyl-1H-indole-3-acetonitrile), A3 (Indole-3-carboxaldehyde), A5 (2-Chloro-1H-indole-3-carboxaldehyde), A8 (1-Methyl-indole-3-carboxaldehyde), and A9 (1-Methyl-2-phenyl-1H-indole-3-carboxaldehyde) demonstrated a higher selectivity index compared to the positive control, spiramycin. These derivatives enhanced gastrointestinal motility, increased glutathione (GSH) levels in the small intestine, and reduced malondialdehyde (MDA) and nitric oxide (NO) levels in the small intestine tissue and diamine oxidase (DAO) and NO levels in the serum of infected mice. Notably, A3 exhibited comparable anti-T. gondii tachyzoites activity in the peritoneal cavity. Molecular docking studies indicated that the aldehyde group on the indole scaffold not only formed a hydrogen bond with NTPase-II but also interacted with TgCDPK1 through hydrogen bonding. Among the derivatives, A3 showed promising intestinal barrier protective effects in mice with acute T. gondii infection. This research suggests that indole derivatives could serve as a potential therapeutic strategy for intestinal diseases induced by T. gondii, offering a novel direction for treating intestinal barrier damage and providing valuable insights for the chemical modification of drugs targeting T. gondii. Furthermore, it contributes to the advancement of therapeutic approaches for toxoplasmosis.
Collapse
Affiliation(s)
- Jieqiong Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Weifeng Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Xu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Yonggang Tong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Sihong Wang
- Analysis and Inspection Center, Yanbian University, Yanji 133002, China
| | - Chunmei Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| |
Collapse
|
2
|
Zukić S, Osmanović A, Harej Hrkać A, Kraljević Pavelić S, Špirtović-Halilović S, Veljović E, Roca S, Trifunović S, Završnik D, Maran U. Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. Int J Mol Sci 2024; 25:9390. [PMID: 39273338 PMCID: PMC11395534 DOI: 10.3390/ijms25179390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The pyrimidine heterocycle plays an important role in anticancer research. In particular, the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity relationships (QSARs) that allow for generalization and predictive capabilities in the search for new active compounds. To achieve this, a dataset of pyrimidine and uracil compounds from ChEMBL were collected and curated. A workflow was developed for data-driven machine learning QSAR using an intuitive dataset design and forwards selection of molecular descriptors. The model was thoroughly externally validated against available data. Blind validation was also performed by synthesis and antiproliferative evaluation of new synthesized uracil-based and pyrimidine derivatives. The most active compound among new synthesized derivatives, 2,4,5-trisubstituted pyrimidine was predicted with the QSAR model with differences of 0.02 compared to experimentally tested activity.
Collapse
Affiliation(s)
- Selma Zukić
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | | | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Veljović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička Street 54, 10000 Zagreb, Croatia
| | - Snežana Trifunović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Davorka Završnik
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| |
Collapse
|
3
|
Makhija R, Sharma A, Dubey R, Asati V. Structural Perspectives in the Development of Novel EGFR Inhibitors for the Treatment of NSCLC. Mini Rev Med Chem 2024; 24:1746-1783. [PMID: 38584547 DOI: 10.2174/0113895575296174240323172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell Lung cancer (NSCLC) is the most common type of lung cancer, which is caused by high consumption of tobacco and smoking. It is an epithelial lung cancer that affects about 2.2 million people across the globe, according to International Agency for Research on Cancer (IARC). Non-small cell lung cancer is a malignant tumor caused by EGFR mutation that occurs in the in-frame deletion of exon 19 and L858R point mutation in exon 21. Presently, clinically available inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific and responsible for undesirable adverse effects. Moreover, to solve this problem search for newer EGFR inhibitors is the utmost need for the treatment and/or management of increasing lung cancer burden. The discovery of therapeutic agents that inhibit the specific target in tumorous cells, such as EGFR, is one of the successful strategies in treating many cancer therapies, including lung cancer. The exhaustive literature survey (2018-2023) has shown the importance of medicinally privileged pyrimidine derivatives together, fused and/or clubbed with other heterocyclic rings to design and develop novel EGFR inhibitors. Pyrimidine derivatives substituted with phenylamine, indole, pyrrole, piperazine, pyrazole, thiophene, pyridine and quinazoline derivatives substituted with phenylamine, pyrimidine, morpholine, pyrrole, dioxane, acrylamide, indole, pyridine, furan, pyrimidine, pyrazole etc. are privileged heterocyclic rings shown promising activity by inhibiting EGFR and TKIs. The present review summarizes the structure-activity relationship (SAR) and enzyme inhibitory activity, including IC50 values, percentage inhibition, and kinetic studies of potential compounds from various literature. The review also includes various aspects of molecular docking studies with compounds under clinical trials and patents filed on pyrimidine-based EGFR inhibitors in treating non-small cell lung cancer. The present review may benefit the medicinal chemist for developing novel compounds such as EGFR inhibitors.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Shafiq N, Shahzad N, Rida F, Ahmad Z, Nazir HA, Arshad U, Zareen G, Attiq N, Parveen S, Rashid M, Ali B. One-pot multicomponent synthesis of novel pyridine derivatives for antidiabetic and antiproliferative activities. Future Med Chem 2023; 15:1069-1089. [PMID: 37503685 DOI: 10.4155/fmc-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Due to the close relationship of diabetes with hypertension reported in various research, a set of pyridine derivatives with US FDA-approved drug cores were designed and integrated by artificial intelligence. Methods: Novel pyridines were designed and synthesized. Compounds MNS-1-MNS-4 were evaluated for their structure and were screened for their in vitro antidiabetic (α-amylase) activity and anticancer (HepG2) activity by methyl thiazolyl tetrazolium assay. Comparative 3D quantitative structure-activity relationship analysis and pharmacophore generation were carried out. Results: The study revealed MNS-1 and MNS-4 as good alternatives to acarbose as antidiabetic agents, and MNS-2 as a more viable, better alternative to doxorubicin in the methyl thiazolyl tetrazolium assay. Conclusion: This combination of studies identifies new and more active analogs of existing FDA-approved drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Nabeel Shahzad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Fatima Rida
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Zaheer Ahmad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Hafiza Ayesha Nazir
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Gul Zareen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Naila Attiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Basharat Ali
- Department of Chemistry, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| |
Collapse
|
5
|
Chen L, Lin Y, Yan X, Ni H, Chen F, He F. 3D-QSAR studies on the structure-bitterness analysis of citrus flavonoids. Food Funct 2023; 14:4921-4930. [PMID: 37158134 DOI: 10.1039/d3fo00601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their important bioactivities, the unpleasant bitter taste of citrus derived flavonoids limits their applications in the food industry, and the structure-bitterness relationship of flavonoids is still far from clear. In this study, 26 flavonoids were characterized by their bitterness threshold and their common skeleton using sensory evaluation and molecular superposition, respectively. The quantitative conformational relationship of the structure-bitterness of flavonoids was explored using 3D-QSAR based on comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). The results showed that increases of a hydrogen bond donor at A-5 or B-3', a bulky group at A-8, or an electron-withdrawing group at B-4' would enhance the bitterness of flavonoids. The bitterness of some flavonoids was predicted and evaluated, and the results were similar to the bitter intensity of the counterparts from the 3D-QSAR and contour plots, confirming the validation of 3D-QSAR. This study explains the theory of the structure-bitterness relationship of flavonoids, by showing potential information for understanding the bitterness in citrus flavonoids and developing a debittering process.
Collapse
Affiliation(s)
- Lufang Chen
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Yanling Lin
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Xing Yan
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Fan He
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| |
Collapse
|
6
|
He J, Luo L, Xu S, Yang F, Zhu W. Pyrrole-based EGFR inhibitors for the treatment of NCSLC: Binding modes and SARs investigations. Chem Biol Drug Des 2023; 101:195-217. [PMID: 36394145 DOI: 10.1111/cbdd.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022]
Abstract
The treatment of advanced non-small cell lung cancer (NSCLC) has made substantial progress due to the rapid development of small molecule targeted therapy, with dramatically prolonged survival. As an effective drug for the treatment of NSCLC, epidermal growth factor receptor (EGFR) inhibitors are currently experiencing issues like severe adverse events and drug resistance. It is urgent to develop novel types of EGFR inhibitors to overcome the abovementioned limitations. Pyrrole always works well as a probe for the creation of novel medication candidates for hard-to-treat conditions like lung cancer. Although the design, synthesis, and biological assays of pyrrole derivatives have been reported, their inhibitory actions against the receptor tyrosine kinase (RTK) EGFR have not been in-depthly studied. This review highlights the small molecule EGFR inhibitors containing pyrrole heterocyclic pharmacophores in recent years, and the research on their mechanism, biological activity, and structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Feiyi Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
8
|
Liu X, Li Y, Zhang Q, Pan Q, Zheng P, Dai X, Bai Z, Zhu W. Design, Synthesis, and Biological Evaluation of [1,2,4]triazolo[4,3-a] Pyrazine Derivatives as Novel Dual c-Met/VEGFR-2 Inhibitors. Front Chem 2022; 10:815534. [PMID: 35464202 PMCID: PMC9019572 DOI: 10.3389/fchem.2022.815534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we designed and synthesized a series of novel [1,2,4]triazolo [4,3-a]pyrazine derivatives, and evaluated them for their inhibitory activities toward c-Met/VEGFR-2 kinases and antiproliferative activities against tested three cell lines in vitro. Most of the compounds showed satisfactory activity compared with lead compound foretinib. Among them, the most promising compound 17l exhibited excellent antiproliferative activities against A549, MCF-7, and Hela cancer cell lines with IC50 values of 0.98 ± 0.08, 1.05 ± 0.17, and 1.28 ± 0.25 µM, respectively, as well as excellent kinase inhibitory activities (c-Met IC50 = 26.00 nM and VEGFR-2 IC50 = 2.6 µM). Moreover, compound 17l inhibited the growth of A549 cells in G0/G1 phase in a dose-dependent manner, and induced the late apoptosis of A549 cells. Its intervention on intracellular c-Met signaling of A549 was verified by the result of Western blot. Fluorescence quantitative PCR showed that compound 17l inhibited the growth of A549 cells by inhibiting the expression of c-Met and VEGFR-2, and its hemolytic toxicity was low. Molecular docking and molecular dynamics simulation indicated that compound 17l could bind to c-Met and VEGFR-2 protein, which was similar to that of foretinib.
Collapse
Affiliation(s)
- Xiaobo Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yuzhen Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qian Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xinyang Dai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhaoshi Bai
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhaoshi Bai, ; Wufu Zhu,
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
- *Correspondence: Zhaoshi Bai, ; Wufu Zhu,
| |
Collapse
|
9
|
Panggabean JA, Adiguna SP, Murniasih T, Rahmawati SI, Bayu A, Putra MY. Structure-Activity Relationship of Cytotoxic Natural Products from Indonesian Marine Sponges. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:12-38. [PMID: 35034994 PMCID: PMC8740879 DOI: 10.1007/s43450-021-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Indonesian marine natural products have been one of the most promising sources in the race to obtain potential drugs for cancer treatment. One of the primary producers of cytotoxic compounds is sponges. However, there are still limited sources of comprehensive reviews related to the relationship between the structure of isolated compounds and their cytotoxic activity. This review remarks the attempt to provide a preliminary guidance from the perspective of structure-activity relationship and its participation on marine natural products research. This guidance is segregated by the compound's classes and their cytotoxic targets to obtain and organized a reliable summary of inter-study of the isolated compounds and their cytotoxicity. Structure-activity relationship is well-known for its ability to tune the bioactivity of a specific compound, especially on synthetic organic chemistry and in silico study but rarely used on natural product chemistry. The present review is intended to narrow down the endless possibilities of cytotoxicity by giving a predictable structure-activity relationship for active compounds. In addition, bioactive framework leads were selected by uncovering a noticeable structure-activity relationship with the intervention of cytotoxic agents from natural sources, especially Indonesian marine sponge. Graphical abstract
Collapse
Affiliation(s)
- Jonathan A. Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Sya’ban P. Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Tutik Murniasih
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Siti I. Rahmawati
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Asep Bayu
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Masteria Y. Putra
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| |
Collapse
|
10
|
Li QM, Lin GS, Duan WG, Cui YC, Li FY, Lei FH, Li DP. Design, synthesis, and antiproliferative evaluation of novel longifolene-derived tetraline pyrimidine derivatives with fluorescence properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01054b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the search for novel compounds with both survivin inhibitory activity and fluorescence properties, 18 novel longifolene-derived tetralin pyrimidine compounds were designed using survivin as the target and synthesized from the sustainable natural resource longifolene.
Collapse
Affiliation(s)
- Qing-Min Li
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Gui-Shan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Yu-Cheng Cui
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 530004, People's Republic of China
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, Guangxi, 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
11
|
Sui YF, Ansari MF, Zhou CH. Pyrimidinetrione-imidazoles as a Unique Structural Type of Potential Agents towards Candida Albicans: Design, Synthesis and Biological Evaluation. Chem Asian J 2021; 16:1417-1429. [PMID: 33829660 DOI: 10.1002/asia.202100146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Substantial morbidity and mortality of fungal infections have aroused concerns all over the world, and common Candida spp. currently bring about severe systemic infections. A series of pyrimidinetrione-imidazole conjugates as potentially antifungal agents were developed. Bioassays manifested that 4-fluobenzyl pyrimidinetrione imidazole 5 f exerted favorable inhibition towards C. albicans (MIC=0.002 mM), being 6.5 folds more active than clinical antifungal drug fluconazole (MIC=0.013 mM). Preliminary mechanism research indicated that compound 5 f could not only depolarize membrane potential but also permeabilize the membrane of C. albicans. Molecular docking was operated to simulate the interaction mode between molecule 5 f and CYP51. In addition, hybrid 5 f might form 5 f-DNA supramolecular complex via intercalating into DNA. The interference of membrane and DNA might contribute to its fungicidal capacity with no obvious tendency to induce the resistance against C. albicans. Conjugate 5 f endowed good blood compatibility as well as low cytotoxicity towards HeLa and HEK-293T cells.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
12
|
Design, synthesis and evaluation of anti-proliferative activity of 2-aryl-4-aminoquinazoline derivatives as EGFR inhibitors. Bioorg Chem 2021; 112:104848. [PMID: 33819737 DOI: 10.1016/j.bioorg.2021.104848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
A class of 2-aryl-4-aminoquinazoline derivatives (7a-7j, 8a-8h, 9a-9h and 10a-10k) were designed, synthesized and evaluated as EGFR inhibitors. The anti-proliferative activity of compounds in vitro showed that compound 9e was considered to be a promising derivative. Compared with the lead compound Angew2017-7634-1, 9e exhibited excellent inhibitory activity against A549, NCI-H460 and H1975 cell lines, with IC50 values of 14.33 ± 1.16 μM, 17.81 ± 1.25 μM and 13.41 ± 1.14 μM, respectively. Moreover, 9e could effectively inhibit against Ba/F3-EGFRDel19/T790M/C797S cell lines. In the kinase experiment, the most promising compound 9e exhibited excellent enzymatic inhibitory activity and selectivity for EGFRL858R/T790M, with an IC50 value of 0.74 μM. Further activity studies showed that 9e could not only induce remarkable cell-apoptosis of A549, but also block A549 cell lines in S-phase in a concentration-dependent manner. Furthermore, molecular docking study revealed the binding mode of 9e. All in all, we analyzed the structure-activity relationship of the target compounds, and explored their mechanism of action.
Collapse
|
13
|
Parsekar SU, Velankanni P, Sridhar S, Haldar P, Mate NA, Banerjee A, Sudhadevi Antharjanam PK, Koley AP, Kumar M. Protein binding studies with human serum albumin, molecular docking and in vitro cytotoxicity studies using HeLa cervical carcinoma cells of Cu(ii)/Zn(ii) complexes containing a carbohydrazone ligand. Dalton Trans 2020; 49:2947-2965. [PMID: 32073070 DOI: 10.1039/c9dt04656a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction of two binuclear mixed ligand Cu(ii) complexes [Cu(o-phen)LCu(OAc)] (1) and [Cu(o-phen)LCu(o-phen)](OAc) (2) (H3L = o-HOC6H4C(H)[double bond, length as m-dash]N-NH-C(OH)[double bond, length as m-dash]N-N[double bond, length as m-dash]C(H)-C6H4OH-o) and a new mononuclear Zn(ii) complex [Zn(HL)(o-phen)(H2O)](OAc)·H2O (3) (H2L = o-HOC6H4-C(H)[double bond, length as m-dash]N-NH-C([double bond, length as m-dash]O)-NH-N[double bond, length as m-dash]C(H)-C6H4OH-o, o-phen = 1,10-phenanthroline, and OAc = CH3COO-) with human serum albumin (HSA) was studied using fluorescence quenching, synchronous and 3D fluorescence measurements and UV-vis spectroscopy. 3D fluorescence studies showed that the HSA structure was altered at the secondary and tertiary levels upon binding with the complexes. This was further supported by the electronic absorption spectral studies of HSA in the absence and presence of the compounds. The average binding distance (r) between HSA and the complexes was obtained by Förster's resonance energy transfer theory. Complex 3 was structurally characterized by X-ray crystallography. Molecular docking studies indicated that all three complexes primarily bind to HSA in subdomain IIA with amino acid residues such as Arg218 and Lys199 which are located at the entrance of Sudlow's site I. The in vitro cytotoxicities of complexes 1-3 against HeLa cells showed promising anticancer activity (IC50 = 3.5, 3.9 and 16.9 μM for 1, 2 and 3, respectively). Live cell time lapse imaging for 1 was done to capture the dynamic behavior of the cells upon treatment with the complex. Cell cycle analysis by flow cytometry with HeLa cells indicated that 1 and 2 induced cell cycle arrest in the G2/M phase while 3 induced arrest in the G0/G1 phase leading to cell death. Compounds 1 and 2 but not 3 induced apoptosis through the mitochondrial pathway as suggested from the relative p53, caspase3 and bcl2 mRNA levels measured by real-time quantitative PCR analysis.
Collapse
Affiliation(s)
- Sidhali U Parsekar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Priyanka Velankanni
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Shruti Sridhar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India. and Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Goa 403 726, India
| | - Paramita Haldar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Nayan A Mate
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Goa 403 726, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Goa 403 726, India
| | - P K Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Aditya P Koley
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403 726, India.
| | - Manjuri Kumar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
14
|
Discovery of thiapyran-pyrimidine derivatives as potential EGFR inhibitors. Bioorg Med Chem 2020; 28:115669. [DOI: 10.1016/j.bmc.2020.115669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
|
15
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
16
|
Environmentally Friendly Fluoroquinolone Derivatives with Lower Plasma Protein Binding Rate Designed Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186626. [PMID: 32932916 PMCID: PMC7560044 DOI: 10.3390/ijerph17186626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023]
Abstract
Comparative molecular similarity index analysis (CoMSIA) was used to establish a three-dimensional quantitative structure–activity relationship (3D-QSAR) model with structural parameters of quinolones as the independent variables and plasma protein binding rate (logfb) as the dependent variable to predict the logfb values of remaining quinolones in this study. In addition, the mono-substituted and bis-substituted reaction schemes that significantly influenced the plasma protein binding rate of quinolones were determined through an analysis of the 3D-QSAR contour maps. It was found that the replacement of small groups, hydrophobic groups, electronegative groups, or hydrogen bond acceptor groups at the substitution sites significantly reduce the logfb values of quinolone derivatives. Furthermore, the mechanism of decrease in binding rate between trovafloxacin (TRO) derivatives and plasma protein was revealed qualitatively and quantitatively based on molecular docking and molecular dynamics simulation. After modification of the target molecule, 11 TRO derivatives with low plasma protein binding rates were screened (reduced by 0.50–24.18%). Compared with the target molecule, the molecular genotoxicity and photodegradability of the TRO derivatives was higher (genotoxicity increased by 4.89–21.36%, and photodegradability increased by 9.04–20.56%), and their bioconcentration was significantly lower (by 36.90–61.41%).
Collapse
|
17
|
Zhang Q, Liu X, Gan W, Wu J, Zhou H, Yang Z, Zhang Y, Liao M, Yuan P, Xu S, Zheng P, Zhu W. Discovery of Triazolo-pyridazine/-pyrimidine Derivatives Bearing Aromatic (Heterocycle)-Coupled Azole Units as Class II c-Met Inhibitors. ACS OMEGA 2020; 5:16482-16490. [PMID: 32685812 PMCID: PMC7364574 DOI: 10.1021/acsomega.0c00838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 05/29/2023]
Abstract
Two series of novel triazolo-pyridazine/-pyrimidine derivatives were designed, synthesized, and evaluated for their inhibitory activity against c-Met kinase, as well as three c-Met overexpressed cancer cell lines (A549, MCF-7, and HeLa) and one normal human hepatocytes cell line LO2 in vitro. The pharmacological data indicated that most of the tested compounds showed moderate cytotoxicity, and the most promising compound 12e exhibited significant cytotoxicity against A549, MCF-7, and HeLa cell lines with IC50 values of 1.06 ± 0.16, 1.23 ± 0.18, and 2.73 ± 0.33 μM, respectively. Moreover, the inhibitory activity of compound 12e against c-Met kinase (IC50 = 0.090 μM) was equal to that of Foretinib (IC50 = 0.019 μM). The result of the acridine orange (AO) single staining test demonstrated that compound 12e could remarkably induce apoptosis of A549 cells. The results of apoptosis and cycle distribution of cells showed that compound 12e could induce late apoptosis of A549 cells and stimulate A549 cells arresting in the G0/G1 phase. Structure-activity relationships (SARs), pharmacological results, and docking studies indicated that the introduction of 5-methylthiazole fragment to the five-atom moiety was beneficial for the activity. So far, the existing data indicated that compound 12e may become a potential class II c-Met inhibitor.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xiaobo Liu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wenhui Gan
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jinjin Wu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Hualan Zhou
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Zunhua Yang
- College
of Pharmacy, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Yiling Zhang
- College
of Pharmacy, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Min Liao
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Ping Yuan
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
18
|
Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem 2020; 7:873. [PMID: 31970149 PMCID: PMC6960140 DOI: 10.3389/fchem.2019.00873] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rational drug design implies usage of molecular modeling techniques such as pharmacophore modeling, molecular dynamics, virtual screening, and molecular docking to explain the activity of biomolecules, define molecular determinants for interaction with the drug target, and design more efficient drug candidates. Kinases play an essential role in cell function and therefore are extensively studied targets in drug design and discovery. Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In this review, computational methods used in rational drug design of kinase inhibitors are discussed and compared, considering some representative case studies.
Collapse
Affiliation(s)
- Zarko Gagic
- Department of Pharmaceutical Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|