1
|
Mustafa EM, Shahin AI, Alrashed AS, Bahaaddin AH, Alajmi AA, Hashem O, Anbar HS, El-Gamal MI. An overview of the latest outlook of sulfamate derivatives as anticancer candidates (2020-2024). Arch Pharm (Weinheim) 2024; 357:e2400331. [PMID: 38943437 DOI: 10.1002/ardp.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Considering the emergence of new anticancer drugs, in this review we emphasized and highlighted the recent reports and advances related to sulfamate-incorporating compounds with potential anticancer activity during the last 5 years (2020-2024). Additionally, we discussed their structure-activity relationship, clarifying their potent bioactivity as anticancer agents. Sulfamate derivatives hold promise as effective therapeutic candidates against cancer. By targeting biological targets associated with the development of cancer, such as steroid sulfatases (STS), carbonic anhydrases (CAs), microtubules, NEDD8-activating enzyme, small ubiquitin-like modifiers (SUMO)-activating enzyme (SAE), cyclin-dependent kinases (CDKs), breast cancer susceptibility gene 1 (BRCA1), and so on, this can furnish small molecules as anticancer lead candidates serving the drug discovery field. For example, compound 2, an STS inhibitor, demonstrated superior activity compared to its reference, irosustat, by fivefold. In addition, compound 21, an SAE, is under phase I clinical trials. Continued research into sulfamate derivatives holds potential for the development of novel therapeutic agents targeting various diseases.
Collapse
Affiliation(s)
- Esra M Mustafa
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Afnan I Shahin
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aishah S Alrashed
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Aesheh H Bahaaddin
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Aljawhra A Alajmi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Omar Hashem
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Moi D, Vittorio S, Angeli A, Supuran CT, Onnis V. Discovery of a New Class of 1-(4-Sulfamoylbenzoyl)piperidine-4-carboxamides as Human Carbonic Anhydrase Inhibitors. ACS Med Chem Lett 2024; 15:470-477. [PMID: 38628786 PMCID: PMC11017293 DOI: 10.1021/acsmedchemlett.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
A series of 1-(4-sulfamoylbenzoyl)piperidine-4-carboxamides deriving from substituted piperazines/benzylamines was designed, synthesized, and tested on human carbonic anhydrase (hCA). The inhibitory activity of the new sulfonamides was analyzed using acetazolamide (AAZ) as a standard inhibitor against hCA I, II, IX, and XII. Several sulfonamides showed both inhibitory activity at low nanomolar concentrations and selectivity against the cytosolic hCA II isoform, and the same trend was observed on the tumor-associated hCA IX and XII. The benzenesulfonamido carboxamides 11 and 15 were the most potent of the piperazino- and benzylamino-based series, respectively. Docking and molecular dynamics studies related the high selectivity of compound 11 toward the tumor-associated hCA isoforms to its capability to participate in favorable interactions within hCA IX and hCA XII active sites, whereas no such interactions were detected within both hCA I and hCA II isoforms.
Collapse
Affiliation(s)
- Davide Moi
- Dipartimento
di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Serena Vittorio
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, 20122 Milano, Italy
| | - Andrea Angeli
- Laboratorio
di Chimica Bioinorganica, Polo Scientifico Neurofarba Department, Università Degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Laboratorio
di Chimica Bioinorganica, Polo Scientifico Neurofarba Department, Università Degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Valentina Onnis
- Dipartimento
di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010091. [PMID: 36615285 PMCID: PMC9822402 DOI: 10.3390/molecules28010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.
Collapse
|
4
|
Moi D, Deplano A, Angeli A, Balboni G, Supuran CT, Onnis V. Synthesis of Sulfonamides Incorporating Piperidinyl-Hydrazidoureido and Piperidinyl-Hydrazidothioureido Moieties and Their Carbonic Anhydrase I, II, IX and XII Inhibitory Activity. Molecules 2022; 27:molecules27175370. [PMID: 36080139 PMCID: PMC9457746 DOI: 10.3390/molecules27175370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Here we report a small library of hydrazinocarbonyl-ureido and thioureido benzenesulfonamide derivatives, designed and synthesized as potent and selective human carbonic anhydrase inhibitors (hCAIs). The synthesized compounds were evaluated against isoforms hCA I, II, IX and XII using acetazolamide (AAZ) as standard inhibitor. Several urea and thiourea derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The thiourea derivatives showed enhanced potency as compared to urea analogues. Additionally, eight compounds 5g, 5m, 5o, 5q, 6l, 6j, 6o and 6u were selected for docking analysis on isoform I, II, IX, XII to illustrate the potential interaction with the enzyme to better understand the activity against the different isoforms.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
| | - Alessandro Deplano
- Pharmacelera, Torre R, 4a Planta, Despatx A05, Parc Cientific de Barcelona, Baldiri Reixac 8, 08028 Barcelona, Spain
| | - Andrea Angeli
- Polo Scientifico Neurofarba Department, Laboratorio di Chimica Bioinorganica, Università Degli Studi di Firenze, Room 188, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
| | - Claudiu T. Supuran
- Polo Scientifico Neurofarba Department, Laboratorio di Chimica Bioinorganica, Università Degli Studi di Firenze, Room 188, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (C.T.S.); (V.O.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
- Correspondence: (C.T.S.); (V.O.)
| |
Collapse
|
5
|
QM and QM/MM study on inhibition mechanism of polyphenolic compounds as non-classical inhibitors of α-human carbonic anhydrase (II). Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Synthesis, Crystal Structure, Inhibitory Activity and Molecular Docking of Coumarins/Sulfonamides Containing Triazolyl Pyridine Moiety as Potent Selective Carbonic Anhydrase IX and XII Inhibitors. CRYSTALS 2021. [DOI: 10.3390/cryst11091076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, two classes of Carbonic Anhydrase (CA) inhibitors, sulfonamide and coumarin derivatives linked to pyta moiety (2a-b) and their corresponding rhenium complexes (3a-b), were designed. These compounds were synthesized and fully characterized by classical analytical methods and X-ray diffraction. All the synthesized compounds were evaluated for their inhibitory activity against the hCA isoforms I, II, IX and XII. They exhibited high inhibitory activities in the range of nanomolar for both hCA IX and hCA XII isoforms. The sulfonamide compound 2a showed the strongest inhibition against the tumour-associated hCA IX isoform with a Ki of 11.7 nM. The tumour-associated isoforms hCA IX and hCA XII were selectively inhibited by all the coumarin derivatives, with inhibition constants ranging from 12.7 nM (2b) to 44.5 nM (3b), while the hCA I and II isoforms were slightly inhibited (in the micromolar range), as expected. In terms of selectivity, compared to previously published rhenium complex-based CA inhibitors, complex 3b showed one of the highest selectivities against hCA IX and hCA XII compared to the off-target isoforms hCA I and hCA II, making it a potential anti-cancer drug candidate. Molecular docking calculations were performed to investigate the inhibition profiles of the investigated compounds at the tumour-associated hCA IX active site and to rationalize our results.
Collapse
|
7
|
Huo XS, Jian XE, Ou-Yang J, Chen L, Yang F, Lv DX, You WW, Rao JJ, Zhao PL. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Eur J Med Chem 2021; 220:113449. [PMID: 33895499 DOI: 10.1016/j.ejmech.2021.113449] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 02/08/2023]
Abstract
By removing 5-methyl and 6-acetyl groups in our previously reported compound 3, we designed a series of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential tubulin polymerization inhibitors. Among them, compound 5e displayed low nanomolar antiproliferative efficacy on HeLa cells which was 166-fold higher than the lead analogue 3. Interestingly, 5e displayed significant selectivity in inhibiting cancer cells over HEK-293 (normal human embryonic kidney cells). In addition, 5e dose-dependently arrested HeLa in G2/M phase through the alterations of the expression levels of p-cdc2 and cyclin B1, and caused HeLa cells apoptosis by regulation of expressions of cleaved PARP. Further evidence demonstrated that 5e effectively inhibited tubulin polymerization and was 3-fold more powerful than positive control CA-4. Moreover, molecular docking analysis indicated that 5e overlapped well with CA-4 in the colchicine-binding site. These studies demonstrated that 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine skeleton might be used as the leading unit to develop novel tubulin polymerization inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Ou-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jin-Jun Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
8
|
Structural investigation of isatin-based benzenesulfonamides as carbonic anhydrase isoform IX inhibitors endowed with anticancer activity using molecular modeling approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
10
|
Ghorab MM, Soliman AM, Bua S, Supuran CT. Biological evaluation, radiosensitizing activity and structural insights of novel halogenated quinazoline-sulfonamide conjugates as selective human carbonic anhydrases IX/XII inhibitors. Bioorg Chem 2021; 107:104618. [PMID: 33485104 DOI: 10.1016/j.bioorg.2020.104618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
A library of iodoquinazolinones endowed with benzenesulfonamide moiety was designed and synthesized as human carbonic anhydrase (hCA) inhibitors. Compounds 4-17 showed generally poor activity against the cytosolic hCA I and hCA II isoforms. Contrarily they were more potent and showed a variable spectrum of selectivity against the tumor-specific isoforms hCA IX and hCA XII. The 4-iodophenyl derivative 12 and the 4-pyridinyl derivative 15 were the most active and selective in this series against hCA IX and hCA XII isoforms with KI of 18 and 9 nM, respectively. Compounds 12 and 15 were further screened for their cytotoxicity against MCF-7, HepG-2 and HCT-116 cancer cell lines besides WI38 and MCF-10A normal cell lines to determine their selectivity towards cancer cells. Compound 12 was selective towards HepG-2 and HCT-116 cell lines but less selective towards MCF-7. While compound 15 showed higher selectivity towards HepG-2 than HCT-116 and MCF-7 cell lines. The ability of compounds 12 and 15 to sensitize the cells against gamma irradiation's effect proved their potential radiosensitizing activity. Molecular docking analysis was carried out to discover the possible binding mode of the compounds within the active site of isoform hCA IX and XII. Compounds 12 and 15 revealed the probable fundamental interactions explaining the good activity and selectivity towards the tumor-specific isoforms.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O Box 29, Nasr City, Cairo 11765, Egypt.
| | - Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O Box 29, Nasr City, Cairo 11765, Egypt
| | - Silvia Bua
- University of Florence, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
11
|
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar, India
| |
Collapse
|
12
|
Sahasrabuddhe A, Oakley D, Chen K, McCarter JD. Development of a High-Throughput Affinity Mass Spectrometry (AMS) Platform Using Laser Diode Thermal Desorption Ionization Coupled to Mass Spectrometry (LDTD-MS). SLAS DISCOVERY 2020; 26:230-241. [PMID: 33334237 DOI: 10.1177/2472555220979596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Affinity selection mass spectrometry (MS) or, simply, affinity mass spectrometry (AMS) is a label-free technology that has been used to identify high-affinity ligands of target proteins of interest by screening against small-molecule compound libraries and identifying molecules that are enriched in the presence of the target protein. We have previously applied Agilent Technology's (Santa Clara, CA) RapidFire solid-phase extraction (SPE)-based high-throughput MS technology to screen small-molecule libraries using AMS. However, SPE-based technologies rely on fluidics for desalting and separation prior to mass analysis with attendant high solvent consumption, relatively high sample volume requirements, risk of sample carryover, and frequent maintenance. To address these challenges, we have established an AMS platform using a laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) ionization source (Phytronix, Quebec, Canada) coupled with a SCIEX 5600+ TripleTOF MS (Framingham, MA). We also validated a data-independent acquisition (DIA) Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) method for the robust detection and analysis of small-molecule affinity hits. An informatics platform developed in-house has resulted in a streamlined data analysis workflow for high-throughput AMS screening campaigns and reduced data processing time without compromising data quality. Finally, 68,000 compounds were screened in a single plate and affinity selected hits were confirmed in an orthogonal enzyme activity assay.
Collapse
Affiliation(s)
| | - Dylan Oakley
- Research Automation Technologies, Thousand Oaks, CA, USA
| | - Kui Chen
- Discovery Technologies, Thousand Oaks, CA, USA
| | | |
Collapse
|
13
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
14
|
Quantum mechanical study of human carbonic anhydrase II in complex with polyamines as novel inhibitors: Kinetic and thermodynamic investigation. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Moi D, Nocentini A, Deplano A, Osman SM, AlOthman ZA, Piras V, Balboni G, Supuran CT, Onnis V. Appliance of the piperidinyl-hydrazidoureido linker to benzenesulfonamide compounds: Synthesis, in vitro and in silico evaluation of potent carbonic anhydrase II, IX and XII inhibitors. Bioorg Chem 2020; 98:103728. [PMID: 32182519 DOI: 10.1016/j.bioorg.2020.103728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023]
Abstract
Herein we report on a new series of hydrazidoureidobenzensulfonamides investigated as inhibitors of the cytosolic human (h) hCA I and II isoforms, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The reported derivatives contain a 4-substituted piperidine fragment in which the hydrazidoureido linker has been involved as spacer between the benzenesulfonamide fragment which binds the zinc ion from the active site, and the tail of the inhibitor. Depending on the substitution pattern at the piperidine ring, low nanomolar inhibitors were detected against hCA II, hCA IX and hCA XII, making the new class of sulfonamides of interest for various pharmacologic applications.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Alessandro Deplano
- Pharmacelera, Placa Pau Vila, 1, Sector 1, Edificio Palau de Mar, Barcelona 08039, Spain
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid A AlOthman
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valentina Piras
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy.
| |
Collapse
|