1
|
Benediktsdottir A, Sooriyaarachchi S, Cao S, Ottosson NE, Lindström S, Lundgren B, Kloditz K, Lola D, Bobileva O, Loza E, Hughes D, Jones TA, Mowbray SL, Zamaratski E, Sandström A, Karlén A. Design, synthesis, and in vitro biological evaluation of meta-sulfonamidobenzamide-based antibacterial LpxH inhibitors. Eur J Med Chem 2024; 278:116790. [PMID: 39236497 DOI: 10.1016/j.ejmech.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity. Our findings reveal that maintaining wild-type antibacterial activity necessitates removal of the N-methyl group when shifting the ortho-N-methyl-sulfonamide to the meta-position. This discovery led to the synthesis of meta-sulfonamidobenzamide analogs with potent antibacterial activity and enzyme inhibition. Moreover, we demonstrate that modifying the benzamide scaffold can alter blocking of the cardiac voltage-gated potassium ion channel hERG. Furthermore, two LpxH-bound X-ray structures show how the enzyme-ligand interactions of the meta-sulfonamidobenzamide analogs differ from those of the previously reported ortho analogs. Overall, our study has identified meta-sulfonamidobenzamide derivatives as promising LpxH inhibitors with the potential for optimization in future antibacterial hit-to-lead programs.
Collapse
Affiliation(s)
- Andrea Benediktsdottir
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden.
| | | | - Sha Cao
- Department of Medical Biochemistry and Microbiology, BMC, Box 582, SE-75123, Uppsala, Sweden
| | - Nina E Ottosson
- Department of Biomedical and Clinical Sciences, BKV, Linköping University, SE-581 85, Linköping, Sweden; Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Solna, Sweden
| | - Stefan Lindström
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Bo Lundgren
- Department of Biochemistry and Biophysics, Stockholm University, Biochemical and Cellular Assay Unit, Drug Discovery and Development Platform, Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
| | - Katharina Kloditz
- Department of Biochemistry and Biophysics, Stockholm University, Biochemical and Cellular Assay Unit, Drug Discovery and Development Platform, Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
| | - Daina Lola
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Olga Bobileva
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Einars Loza
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, BMC, Box 582, SE-75123, Uppsala, Sweden
| | - T Alwyn Jones
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75123, Uppsala, Sweden
| | - Sherry L Mowbray
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75123, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden
| | - Edouard Zamaratski
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden.
| |
Collapse
|
2
|
Schuster S, Vavra M, Wirth DAN, Kern WV. Comparative reassessment of AcrB efflux inhibitors reveals differential impact of specific pump mutations on the activity of potent compounds. Microbiol Spectr 2024; 12:e0304523. [PMID: 38170977 PMCID: PMC10846202 DOI: 10.1128/spectrum.03045-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Multidrug resistance poses global challenges, particularly with regard to Gram-negative bacterial infections. In view of the lack of new antibiotics, drug enhancers, such as efflux pump inhibitors (EPIs), have increasingly come into focus. A number of chemically diverse agents have been reported to inhibit AcrB, the main multidrug transporter in Escherichia coli, and homologs in other Gram-negative bacteria. However, due to the often varying methodologies used for their characterization, results remain difficult to compare. In this study, using a defined selection of antibiotics known to be efflux substrates, we reevaluated 38 published compounds for their in vitro EPI activity. When examined in an E. coli strain with stable wild-type AcrB overexpression, we found 17 compounds showing at least fourfold enhancing potency with more than 2 out of 10 test drugs (belonging to eight antibiotic classes). Pyranopyridines (MBX series) were confirmed as the most potent inhibitors among agents reported so far. A new and surprising finding was that their activity, unlike that of the pyridylpiperazine EPI BDM88855, was highly susceptible to the AcrB double-mutation G141D_N282Y, which had previously been shown to diminish drug enhancing of 1-(1-naphthylmethyl)piperazine in a predominantly substrate-specific manner. Conversely, transmembrane region mutation V411A, while eliminating the drug potentiating of the BDM compound, did not decrease the activity of the MBX EPIs. Besides comparative reassessment of the potency of reported EPIs, the study demonstrated the usefulness of mutagenesis approaches providing tools for an initial discrimination of EPIs regarding their mode of function.IMPORTANCEInfections with difficult-to-treat multidrug-resistant bacteria pose an urgent global threat in view of the stagnating development of new antimicrobial substances. Efflux pumps in Gram-negative pathogens are known to substantially contribute to multidrug resistance making them promising targets for chemotherapeutic interventions to restore the efficacy of conventional antibiotics. In the present study, the in vitro activity of previously reported efflux pump inhibitors was reassessed using standardized conditions. Relevant drug sensitizing activity could be proven for almost half of the tested compounds. Further characterization of potent inhibitors was achieved by investigating the impact of specific efflux pump mutations. A double-mutation previously known to decrease the activity of the arylpiperazine 1-(1-naphthylmethyl)piperazine also impaired that of the highly efficient pyranopyridine efflux pump inhibitors. Our findings provide direct comparability of reported efflux pump inhibitors and contribute to the elucidation of their mode of action.
Collapse
Affiliation(s)
- Sabine Schuster
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Martina Vavra
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Dave A. N. Wirth
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Winfried V. Kern
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| |
Collapse
|
3
|
Chauhan SS, Gupta A, Srivastava A, Parthasarathi R. Discovering targeted inhibitors for Escherichia coli efflux pump fusion proteins using computational and structure-guided approaches. J Comput Chem 2024; 45:13-24. [PMID: 37656428 DOI: 10.1002/jcc.27215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Multidrug resistance pathogens causing infections and illness remain largely untreated clinically. Efflux pumps are one of the primary processes through which bacteria develop resistance by transferring antibiotics from the interior of their cells to the outside environment. Inhibiting these pumps by developing efficient derivatives appears to be a promising strategy for restoring antibiotic potency. This investigation explores literature-reported inhibitors of E. coli efflux pump fusion proteins AcrB-AcrA and identify potential chemical derivatives of these inhibitors to overcome the limitations. Using computational and structure-guided approaches, a study was conducted with the selected inhibitors (AcrA:25-AcrB:59) obtained by data mining and their derivatives (AcrA:857-AcrB:3891) to identify their inhibitory effect on efflux pump using virtual screening, molecular docking and density functional theory (DFT) calculations. The finding indicates that Compound 2 (ZINC000072136376) has shown better binding and a significant inhibitory effect on AcrA, while Compound 3 (ZINC000072266819) has shown stronger binding and substantial inhibition effect on both non-mutant and mutated AcrB subunits. The identified derivatives could exhibit a better inhibitor and provide a potential approach for restoring the actions of resistant antibiotics.
Collapse
Affiliation(s)
- Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshika Gupta
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Aashna Srivastava
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Pisoni LA, Semple SJ, Liu S, Sykes MJ, Venter H. Combined Structure- and Ligand-Based Approach for the Identification of Inhibitors of AcrAB-TolC in Escherichia coli. ACS Infect Dis 2023; 9:2504-2522. [PMID: 37888944 DOI: 10.1021/acsinfecdis.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The inhibition of efflux pumps is a promising approach to combating multidrug-resistant bacteria. We have developed a combined structure- and ligand-based model, using OpenEye software, for the identification of inhibitors of AcrB, the inner membrane protein component of the AcrAB-TolC efflux pump in Escherichia coli. From a database of 1391 FDA-approved drugs, 23 compounds were selected to test for efflux inhibition in E. coli. Seven compounds, including ivacaftor (25), butenafine (19), naftifine (27), pimozide (30), thioridazine (35), trifluoperazine (37), and meloxicam (26), enhanced the activity of at least one antimicrobial substrate and inhibited the efflux pump-mediated removal of the substrate Nile Red from cells. Ivacaftor (25) inhibited efflux dose dependently, had no effect on an E. coli strain with genomic deletion of the gene encoding AcrB, and did not damage the bacterial outer membrane. In the presence of a sub-minimum inhibitory concentration (MIC) of the outer membrane permeabilizer colistin, ivacaftor at 1 μg/mL reduced the MICs of erythromycin and minocycline by 4- to 8-fold. The identification of seven potential AcrB inhibitors shows the merits of a combined structure- and ligand-based approach to virtual screening.
Collapse
Affiliation(s)
- Lily A Pisoni
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sida Liu
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew J Sykes
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
5
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
6
|
Phan TV, Nguyen CHH, Nguyen VTV. 3D-Pharmacophore and Molecular Docking Studies for AcrAB-TolC Efflux Pump Potential Inhibitors from DrugBank and Traditional Chinese Medical Database. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Due to the widespread resistance to several antibiotics, the AcrAB-TolC tripartite efflux pump is the primary multi-drug efflux system of Escherichia coli. One of the most promising treatments since the discovery of efflux pump inhibitors is the combination of them with antibiotics.
AIM: Based on the efflux pump inhibitor database and the structure of AcrB, the research was created the virtual screening models with prediction capabilities for the efflux pump inhibitory effects of candidates from the DrugBank and Traditional Chinese Medical databank.
Methods: The pharmacophore models were developed by MOE 2015.10 software using a database of 119 efflux pump inhibitors discovered in 12 research publications and belonged to different structural classes. The binding site was found on the AcrB protein (PDB: 4DX7) by LeadIT 2.0.2 software that corresponds to the hydrophobic trap in the proximal pocket.
Results: The potential inhibitors which satisfied the pharmacophore model and had docking scores under -20 kJ.mol-1 have been established. In which, TCM_20290, DB00303, DB04642, DB08116, TCM_29530, and 2,5-dimethyl-3-O-D-glucopyranosyl-naphthol have the best docking scores of -32.76, -26.59, -26.14, -25.62, -24.88, and -22.82 kJ.mol-1, respectively.
Conclusions: After the screening, the result was obtained six compounds may be potential efflux pump inhibitors that can be used for additional studies. In the future, further in vitro and in vivo research should be required to confirm the effects of these compounds. The ongoing battle against antibiotic resistance shows promise with the finding on initiators that can obstruct AcrAB–TolC multidrug efflux pumps.
Keywords: AcrAB-TolC, inhibitors, Escherichia coli, pharmacophore, molecular docking.
Collapse
|
7
|
Chawla M, Verma J, Gupta R, Das B. Antibiotic Potentiators Against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance. Front Microbiol 2022; 13:887251. [PMID: 35847117 PMCID: PMC9284026 DOI: 10.3389/fmicb.2022.887251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance in clinically important microbes has emerged as an unmet challenge in global health. Extensively drug-resistant bacterial pathogens have cropped up lately defying the action of even the last resort of antibiotics. This has led to a huge burden in the health sectors and increased morbidity and mortality rate across the world. The dwindling antibiotic discovery pipeline and rampant usage of antibiotics has set the alarming bells necessitating immediate actions to combat this looming threat. Various alternatives to discovery of new antibiotics are gaining attention such as reversing the antibiotic resistance and hence reviving the arsenal of antibiotics in hand. Antibiotic resistance reversal is mainly targeted against the antibiotic resistance mechanisms, which potentiates the effective action of the antibiotic. Such compounds are referred to as resistance breakers or antibiotic adjuvants/potentiators that work in conjunction with antibiotics. Many studies have been conducted for the identification of compounds, which decrease the permeability barrier, expression of efflux pumps and the resistance encoding enzymes. Compounds targeting the stability, inheritance and dissemination of the mobile genetic elements linked with the resistance genes are also potential candidates to curb antibiotic resistance. In pursuit of such compounds various natural sources and synthetic compounds have been harnessed. The activities of a considerable number of compounds seem promising and are currently at various phases of clinical trials. This review recapitulates all the studies pertaining to the use of antibiotic potentiators for the reversal of antibiotic resistance and what the future beholds for their usage in clinical settings.
Collapse
Affiliation(s)
- Meenal Chawla
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Rashi Gupta
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
8
|
Chai WC, Whittall JJ, Song D, Polyak SW, Ogunniyi AD, Wang Y, Bi F, Ma S, Semple SJ, Venter H. Antimicrobial Action and Reversal of Resistance in MRSA by Difluorobenzamide Derivatives Targeted at FtsZ. Antibiotics (Basel) 2020; 9:E873. [PMID: 33291418 PMCID: PMC7762090 DOI: 10.3390/antibiotics9120873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/21/2023] Open
Abstract
The bacterial cell division protein, FtsZ, has been identified as a target for antimicrobial development. Derivatives of 3-methoxybenzamide have shown promising activities as FtsZ inhibitors in Gram-positive bacteria. We sought to characterise the activity of five difluorobenzamide derivatives with non-heterocyclic substituents attached through the 3-oxygen. These compounds exhibited antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA), with an isopentyloxy-substituted compound showing modest activity against vancomycin resistant Enterococcus faecium (VRE). The compounds were able to reverse resistance to oxacillin in highly resistant clinical MRSA strains at concentrations far below their MICs. Three of the compounds inhibited an Escherichia coli strain lacking the AcrAB components of a drug efflux pump, which suggests the lack of Gram-negative activity can partly be attributed to efflux. The compounds inhibited cell division by targeting S. aureus FtsZ, producing a dose-dependent increase in GTPase rate which increased the rate of FtsZ polymerization and stabilized the FtsZ polymers. These compounds did not affect the polymerization of mammalian tubulin and did not display haemolytic activity or cytotoxicity. These derivatives are therefore promising compounds for further development as antimicrobial agents or as resistance breakers to re-sensitive MRSA to beta-lactam antibiotics.
Collapse
Affiliation(s)
- Wern Chern Chai
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| | - Jonathan J. Whittall
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
| | - Steven W. Polyak
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| | - Abiodun D. Ogunniyi
- Australia Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, SA 5371 Roseworthy, Australia;
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
- School of Pharmacy, Liaocheng University, Liaocheng 252000, China
| | - Fangchao Bi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
| | - Susan J. Semple
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| |
Collapse
|
9
|
Design and synthesis of novel 4-substituted quinazoline-2-carboxamide derivatives targeting AcrB to reverse the bacterial multidrug resistance. Bioorg Chem 2020; 105:104394. [DOI: 10.1016/j.bioorg.2020.104394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
|
10
|
Serçinoğlu O, Senturk D, Altinisik Kaya FE, Avci FG, Frlan R, Tomašič T, Ozbek P, Orelle C, Jault JM, Sariyar Akbulut B. Identification of novel inhibitors of the ABC transporter BmrA. Bioorg Chem 2020; 105:104452. [PMID: 33212311 DOI: 10.1016/j.bioorg.2020.104452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 01/02/2023]
Abstract
The resistance of microbes to commonly used antibiotics has become a worldwide health problem. A major underlying mechanism of microbial antibiotic resistance is the export of drugs from bacterial cells. Drug efflux is mediated through the action of multidrug resistance efflux pumps located in the bacterial cell membranes. The critical role of bacterial efflux pumps in antibiotic resistance has directed research efforts to the identification of novel efflux pump inhibitors that can be used alongside antibiotics in clinical settings. Here, we aimed to find potential inhibitors of the archetypical ATP-binding cassette (ABC) efflux pump BmrA of Bacillus subtilis via virtual screening of the Mu.Ta.Lig. Chemotheca small molecule library. Molecular docking calculations targeting the nucleotide-binding domain of BmrA were performed using AutoDock Vina. Following a further drug-likeness filtering step based on Lipinski's Rule of Five, top 25 scorers were identified. These ligands were then clustered into separate groups based on their contact patterns with the BmrA nucleotide-binding domain. Six ligands with distinct contact patterns were used for further in vitro inhibition assays based on intracellular ethidium bromide accumulation. Using this methodology, we identified two novel inhibitors of BmrA from the Chemotheca small molecule library.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Department of Bioengineering, Recep Tayyip Erdogan University, Fener 53100, Rize, Turkey
| | - Duygu Senturk
- Department of Bioengineering, Marmara University, Kadikoy 34722, Istanbul, Turkey
| | | | - Fatma Gizem Avci
- Department of Bioengineering, Uskudar University, Uskudar 34662, Istanbul, Turkey
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Kadikoy 34722, Istanbul, Turkey
| | - Cédric Orelle
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", 7 passage du Vercors, 69367 Lyon Cedex 7, France
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", 7 passage du Vercors, 69367 Lyon Cedex 7, France
| | | |
Collapse
|
11
|
Efflux Pump-Driven Antibiotic and Biocide Cross-Resistance in Pseudomonas aeruginosa Isolated from Different Ecological Niches: A Case Study in the Development of Multidrug Resistance in Environmental Hotspots. Microorganisms 2020; 8:microorganisms8111647. [PMID: 33114277 PMCID: PMC7690850 DOI: 10.3390/microorganisms8111647] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen displaying high intrinsic antimicrobial resistance and the ability to thrive in different ecological environments. In this study, the ability of P. aeruginosa to develop simultaneous resistance to multiple antibiotics and disinfectants in different natural niches were investigated using strains collected from clinical samples, veterinary samples, and wastewater. The correlation between biocide and antimicrobial resistance was determined by employing principal component analysis. Molecular mechanisms linking biocide and antimicrobial resistance were interrogated by determining gene expression using RT-qPCR and identifying a potential genetic determinant for co- and cross-resistance using whole-genome sequencing. A subpopulation of P. aeruginosa isolates belonging to three sequence types was resistant against the common preservative benzalkonium chloride and showed cross-resistance to fluoroquinolones, cephalosporins, aminoglycosides, and multidrug resistance. Of these, the epidemiological high-risk ST235 clone was the most abundant. The overexpression of the MexAB-OprM drug efflux pump resulting from amino acid mutations in regulators MexR, NalC, or NalD was the major contributing factor for cross-resistance that could be reversed by an efflux pump inhibitor. This is the first comparison of antibiotic-biocide cross-resistance in samples isolated from different ecological niches and serves as a confirmation of laboratory-based studies on biocide adapted isolates. The isolates from wastewater had a higher incidence of multidrug resistance and biocide-antibiotic cross-resistance than those from clinical and veterinary settings.
Collapse
|
12
|
Pi H, Nguyen HT, Venter H, Boileau AR, Woolford L, Garg S, Page SW, Russell CC, Baker JR, McCluskey A, O'Donovan LA, Trott DJ, Ogunniyi AD. In vitro Activity of Robenidine Analog NCL195 in Combination With Outer Membrane Permeabilizers Against Gram-Negative Bacterial Pathogens and Impact on Systemic Gram-Positive Bacterial Infection in Mice. Front Microbiol 2020; 11:1556. [PMID: 32849325 PMCID: PMC7417630 DOI: 10.3389/fmicb.2020.01556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens, particularly the ESKAPE group (Enterococcus faecalis/faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter spp.), have become a public health threat worldwide. Development of new antimicrobial classes and the use of drugs in combination are potential strategies to treat MDR ESKAPE pathogen infections and promote optimal antimicrobial stewardship. Here, the in vitro antimicrobial activity of robenidine analog NCL195 alone or in combination with different concentrations of three outer membrane permeabilizers [ethylenediaminetetraacetic acid (EDTA), polymyxin B nonapeptide (PMBN), and polymyxin B (PMB)] was further evaluated against clinical isolates and reference strains of key Gram-negative bacteria. NCL195 alone was bactericidal against Neisseria meningitidis and Neisseria gonorrhoeae (MIC/MBC = 32 μg/mL) and demonstrated synergistic activity against P. aeruginosa, E. coli, K. pneumoniae, and Enterobacter spp. strains in the presence of subinhibitory concentrations of EDTA, PMBN, or PMB. The additive and/or synergistic effects of NCL195 in combination with EDTA, PMBN, or PMB are promising developments for a new chemical class scaffold to treat Gram-negative infections. Tokuyasu cryo ultramicrotomy was used to visualize the effect of NCL195 on bioluminescent S. aureus membrane morphology. Additionally, NCL195’s favorable pharmacokinetic and pharmacodynamic profile was further explored in in vivo safety studies in mice and preliminary efficacy studies against Gram-positive bacteria. Mice administered two doses of NCL195 (50 mg/kg) by the intraperitoneal (IP) route 4 h apart showed no adverse clinical effects and no observable histological effects in major organs. In bioluminescent Streptococcus pneumoniae and S. aureus murine sepsis challenge models, mice that received two 50 mg/kg doses of NCL195 4 or 6 h apart exhibited significantly reduced bacterial loads and longer survival times than untreated mice. However, further medicinal chemistry and pharmaceutical development to improve potency, solubility, and selectivity is required before efficacy testing in Gram-negative infection models.
Collapse
Affiliation(s)
- Hongfei Pi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Alexandra R Boileau
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | | | - Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Lisa A O'Donovan
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food & Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
13
|
Zhang D, Hu Y, Zhu Q, Huang J, Chen Y. Proteomic interrogation of antibiotic resistance and persistence in Escherichia coli - progress and potential for medical research. Expert Rev Proteomics 2020; 17:393-409. [PMID: 32567419 DOI: 10.1080/14789450.2020.1784731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction Escherichia coli strains possess two survival strategies to endure lethal antibiotic exposure including antibiotic resistance and persistence, in which persistence can contribute to the emergence of antibiotic resistance and increasing the risk of multidrug resistance. Using high-throughput proteomics for the comprehensive understanding of mechanisms of antibiotic resistance and persistence is an effective strategy for development of target-based anti-bacterial therapies. Areas covered In this review, we summarize a comprehensive proteomic perspective of antibiotic resistance and persistence in E. coli, and overview of anti-antibiotic resistance and anti-persister molecules and strategies for the development of potential therapies. Expert opinion Proteomics allows us to globally identify the critical proteins and pathways involved in antibiotic resistance and persistence. Advancements in methodologies of proteomics and multi-omic strategies are required to overcome the limitations of proteomics and better understand mechanisms of antibiotic resistance and persistence in E. coli, and to open the possibility for identification of new targets for alternative strategies in therapeutics.
Collapse
Affiliation(s)
- Danfeng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Qiuqiang Zhu
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Jiafu Huang
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China.,Engineering Technological Center of Mushroom Industry , Zhangzhou, China
| | - Yiyun Chen
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| |
Collapse
|