1
|
Mudasani G, Rampeesa NK, Anugu SR, Muddasani P, Gurská S, Džubák P, Hajdúch M, Das V, Gundla R. Design, synthesis, and biological evaluation of novel azaspirooxindolinone derivatives as potent inhibitors of ITK and BTK-dependent cancers. Bioorg Med Chem 2025; 121:118116. [PMID: 40015119 DOI: 10.1016/j.bmc.2025.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) and Bruton's tyrosine kinase (BTK) are two important members of the Tec family with crucial roles in immune system function. Deregulation in ITK and BTK activity is linked to several hematological malignancies, making them key targets for cancer immunotherapy. In this study, we synthesized a series of azaspirooxindolinone derivatives and evaluated their cytotoxic activity against ITK/BTK-negative and positive cancer cell lines, followed by enzymatic inhibition studies to assess the ITK/BTK kinase selectivity of two hit compounds. Several compounds demonstrated selective cytotoxicity against ITK- or BTK-expressing cells. Compound 3d exhibited high cytotoxicity in ITK-positive Jurkat (IC50 = 3.58 µM) and BTK-positive Ramos (IC50 = 3.06 µM) cells, while compound 3j showed strong cytotoxicity in Ramos (IC50 = 1.38 µM) and Jurkat (IC50 = 4.16 µM) cells. Compounds 3a and 3e were selectively cytotoxic in Jurkat cells (IC50 = 9.36 µM and 10.85 µM, respectively), while compounds 3f and 3g were highly cytotoxic in Ramos cells (IC50 = 1.82 µM and 1.42 µM, respectively). None of the active compounds exhibited cytotoxicity in non-cancer cell lines (IC50 > 50 µM), demonstrating their selectivity for malignant cells. Enzyme inhibition assay showed that 3d is a selective ITK inhibitor (IC50 = 0.91 µM) with no detectable BTK inhibition, aligning with its strong activity in ITK-positive cells. In contrast, compound 3j did not inhibit ITK or BTK enzymatically, suggesting an alternative mechanism of action. These findings highlight 3d as a promising ITK inhibitor and warrant further investigation to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Gopal Mudasani
- Aragen Lifesciences Pvt. Ltd, Medicinal Chemistry Laboratory Division, Survey No: 125(Part) & 126, IDA Mallapur, Hyderabad 500076, India; Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India
| | - Naveen Kumar Rampeesa
- Aragen Lifesciences Pvt. Ltd, Medicinal Chemistry Laboratory Division, Survey No: 125(Part) & 126, IDA Mallapur, Hyderabad 500076, India; Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India
| | - Sreenivasa Reddy Anugu
- Aragen Lifesciences Pvt. Ltd, Medicinal Chemistry Laboratory Division, Survey No: 125(Part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Pullareddy Muddasani
- NATCO Research Center, Sanath Nagar Industrial Area, Sanath Nagar, Hyderabad 500018, Telangana, India
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic.
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India.
| |
Collapse
|
2
|
Cheke RS, Kharkar PS. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Dev Res 2024; 85:e22132. [PMID: 38054744 DOI: 10.1002/ddr.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Covalent inhibitors have been used to treat several diseases for over a century. However, strategic approaches for the rational design of covalent drugs have taken a definitive shape in recent times. Since the first appearance of covalent inhibitors in the late 18th century, the field has grown tremendously and around 30% of marketed drugs are covalent inhibitors especially, for oncology indications. However, the off-target toxicity and safety concerns can be significant issues related to the covalent drugs. Covalent kinase inhibitor (CKI) targeted oncotherapeutics has advanced dramatically over the last two decades since the discovery of afatinib (Gilotrif®), an EGFR inhibitor. Since then, US FDA has approved 10 CKIs for diverse cancer targets. The present review broadly summarizes the ongoing development in the discovery of newer CKIs from 2016 till the end of 2022. We believe that these efforts will assist the modern medicinal chemist actively working in the field of CKI discovery for varied indications.
Collapse
Affiliation(s)
- Rameshwar S Cheke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
5
|
Cheng Y, Yu S, He Y, An G, Li G, Yang Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem Sci 2021; 12:3216-3225. [PMID: 34164090 PMCID: PMC8179361 DOI: 10.1039/d0sc05409g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)-Pd(ii) pathway or Pd(ii) catalysis.
Collapse
Affiliation(s)
- Yaohang Cheng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Shijie Yu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Yuhang He
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Zhenyu Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
6
|
Vinogradova EV, Zhang X, Remillard D, Lazar DC, Suciu RM, Wang Y, Bianco G, Yamashita Y, Crowley VM, Schafroth MA, Yokoyama M, Konrad DB, Lum KM, Simon GM, Kemper EK, Lazear MR, Yin S, Blewett MM, Dix MM, Nguyen N, Shokhirev MN, Chin EN, Lairson LL, Melillo B, Schreiber SL, Forli S, Teijaro JR, Cravatt BF. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell 2020; 182:1009-1026.e29. [PMID: 32730809 PMCID: PMC7775622 DOI: 10.1016/j.cell.2020.07.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.
Collapse
Affiliation(s)
| | - Xiaoyu Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel C Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yujia Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Yamashita
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kawauchi-cho, Tokushima 771-0192, Japan
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael A Schafroth
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minoru Yokoyama
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth M Lum
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Esther K Kemper
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael R Lazear
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sifei Yin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Megan M Blewett
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nhan Nguyen
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Kharkar PS. Computational Approaches for the Design of (Mutant-)Selective Tyrosine Kinase Inhibitors: State-of-the-Art and Future Prospects. Curr Top Med Chem 2020; 20:1564-1575. [PMID: 32357816 DOI: 10.2174/1568026620666200502005853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Kinases remain one of the major attractive therapeutic targets for a large number of indications such as cancer, rheumatoid arthritis, cardiac failure and many others. Design and development of kinase inhibitors (ATP-competitive, allosteric or covalent) is a clinically validated and successful strategy in the pharmaceutical industry. The perks come with limitations, particularly the development of resistance to highly potent and selective inhibitors. When this happens, the cycle needs to be repeated, i.e., the design and development of kinase inhibitors active against the mutated forms. The complexity of tumor milieu makes it awfully difficult for these molecularly-targeted therapies to work. Every year newer and better versions of these agents are introduced in the clinic. Several computational approaches such as structure-, ligand-based or hybrid ones continue to live up to their potential in discovering novel kinase inhibitors. New schools of thought in this area continue to emerge, e.g., development of dual-target kinase inhibitors. But there are fundamental issues with this approach. It is indeed difficult to selectively optimize binding at two entirely different or related kinases. In addition to the conventional strategies, modern technologies (machine learning, deep learning, artificial intelligence, etc.) started yielding the results and building success stories. Computational tools invariably played a critical role in catalysing the phenomenal progress in kinase drug discovery field. The present review summarized the progress in utilizing computational methods and tools for discovering (mutant-)selective tyrosine kinase inhibitor drugs in the last three years (2017-2019). Representative investigations have been discussed, while others are merely listed. The author believes that the enthusiastic reader will be inspired to dig out the cited literature extensively to appreciate the progress made so far and the future prospects of the field.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| |
Collapse
|