1
|
Kanupriya, Mittal RK, Sharma V, Biswas T, Mishra I. Recent Advances in Nitrogen-Containing Heterocyclic Scaffolds as Antiviral Agents. Med Chem 2024; 20:487-502. [PMID: 38279757 DOI: 10.2174/0115734064280150231212113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 01/28/2024]
Abstract
This study aims to provide a thorough analysis of nitrogen-containing heterocycles, focusing on their therapeutic implications for the development of targeted and effective antiviral drugs. To better understand how nitrogen-containing heterocycles can be used to create antiviral drugs, this review adopts a systematic literature review strategy to compile and analyze pertinent research studies. It combines information from various fields to understand better the compounds' mode of action and their therapeutic potential. This review paper summarizes data from multiple sources to highlight the promising potential of heterocycles containing nitrogen as promising possibilities for future antiviral treatments. The capacity to engage selectively and modulate critical pathways bodes well for their use in developing new viral therapies. In conclusion, nitrogen-containing heterocycles are shown to be of utmost importance in the field of medicinal chemistry, as emphasized by the review paper. It emphasizes the central importance of chemical insights and pharmacological potential in developing novel and effective antiviral medicines by bringing them together.
Collapse
Affiliation(s)
- Kanupriya
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Ravi Kumar Mittal
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Tanya Biswas
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
2
|
Deng C, Yan H, Wang J, Liu BS, Liu K, Shi YM. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|
4
|
Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 2022; 233:114217. [DOI: 10.1016/j.ejmech.2022.114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
|
5
|
Leanne Bode M, Mabel Coyanis E, Lehlogonolo Mohlala R, Qasim Fish M. Synthesis of Hexahydroquinoline-3-carboxamide Derivatives and Their HIV-1 Antiviral Activity. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Mohlala RL, Coyanis EM, Fish MQ, Fernandes MA, Bode ML. Synthesis of 6-Membered-Ring Fused Thiazine-Dicarboxylates and Thiazole-Pyrimidines via One-Pot Three-Component Reactions. Molecules 2021; 26:5493. [PMID: 34576965 PMCID: PMC8467237 DOI: 10.3390/molecules26185493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
A facile and efficient one-pot three-component reaction method for the synthesis of thiazine-dicarboxylates is reported. Reaction of an isocyanide and dialkyl acetylenedicarboxylate with 2-amino-4H-1,3-thiazin-4-one derivatives containing both an acidic proton and an internal nucleophile gave the products in good yields of 76-85%. The reactivity of dialkyl acetylenedicarboxylates was further tested in the synthesis of thiazole-pyrimidines where a two-component reaction of 2-aminothiazole with dialkyl acetylenedicarboxylates was successfully converted to a more efficient three-component reaction of a thiourea, α-haloketone and dialkyl acetylenedicarboxylate (DMAD/DEtAD) to give thiazole-pyrimidines in good yields of 70-91%.
Collapse
Affiliation(s)
- Reagan L. Mohlala
- Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; (R.L.M.); (M.Q.F.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa;
| | - Elena Mabel Coyanis
- Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; (R.L.M.); (M.Q.F.)
| | - Muhammad Q. Fish
- Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; (R.L.M.); (M.Q.F.)
| | - Manuel A. Fernandes
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa;
| | - Moira L. Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa;
| |
Collapse
|
7
|
Bizzarri BM, Fanelli A, Botta L, De Angelis M, Palamara AT, Nencioni L, Saladino R. Aminomalononitrile inspired prebiotic chemistry as a novel multicomponent tool for the synthesis of imidazole and purine derivatives with anti-influenza A virus activity. RSC Adv 2021; 11:30020-30029. [PMID: 35480240 PMCID: PMC9040849 DOI: 10.1039/d1ra05240c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Amino imidazole carbonitrile derivatives decorated with α-amino acid side-chains have been synthesized by a multicomponent microwave assisted reaction inspired by the prebiotic chemistry of aminomalononitrile as a tool for generating high chemical diversity. These compounds were used as annulation synthons for the preparation of 8,9-disubstituted-6,9-dihydro-1H-purin-6-ones by reaction with formic acid as a simple C-1 donor reagent. The novel heterocycles were characterized by significant activity against influenza A virus, amino imidazole carbonitrile derivatives showing the highest activity. Thus, the chemical complexity generated by prebiotic chemistry furnished a general tool for the identification of novel antiviral agents. Amino imidazole carbonitrile derivatives decorated with α-amino acid side-chains have been synthesized by a multicomponent microwave assisted reaction inspired by the prebiotic chemistry of aminomalononitrile for generating high chemical diversity.![]()
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Angelica Fanelli
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Lorenzo Botta
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome Piazzale Aldo Moro, 5 00185 Rome Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome Piazzale Aldo Moro, 5 00185 Rome Italy .,Department of Infectious Diseases, Istituto Superiore di Sanità Viale Regina Elena, 299 00161 Rome Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome Piazzale Aldo Moro, 5 00185 Rome Italy
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| |
Collapse
|
8
|
Arshad M, Khan MS, Nami SAA, Ahmad SI, Kashif M, Anjum A. Synthesis, characterization, biological, and molecular docking assessment of bioactive 1,3-thiazolidin-4-ones fused with 1-(pyrimidin-2-yl)-1H-imidazol-4-yl) moieties. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Menéndez-Arias L, Martín-Alonso S, Frutos-Beltrán E. An Update on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:31-61. [PMID: 34258736 DOI: 10.1007/978-981-16-0267-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) still claim many lives across the world. However, research efforts during the last 40 years have led to the approval of over 30 antiretroviral drugs and the introduction of combination therapies that have turned HIV infection into a chronic but manageable disease. In this chapter, we provide an update on current available drugs and treatments, as well as future prospects towards reducing pill burden and developing long-acting drugs and novel antiretroviral therapies. In addition, we summarize efforts to cure HIV, including pharmaceutical strategies focused on the elimination of the virus.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | - Samara Martín-Alonso
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Bhati S. Structure-based drug designing of naphthalene based SARS-CoV PLpro inhibitors for the treatment of COVID-19. Heliyon 2020; 6:e05558. [PMID: 33251371 PMCID: PMC7679114 DOI: 10.1016/j.heliyon.2020.e05558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a greater challenge for the world. Coronavirus has infected over 38.3 million people and caused millions of deaths worldwide. The COVID-19 outbreak has accentuated the need for additional efforts to develop broad-spectrum therapeutics to combat SARS-CoV-2 infection. In the current investigation, an attempt was made to design potential SARS-CoV PLpro inhibitors containing naphthalene and 3,4-dihydro-2H-pyran moieties connected via -NHCO- linker. The ligands obeyed Lipinski's rule and were found to have good drug-likeness and ADMET properties. Docking simulations confirmed strong binding affinity and inhibition potential of the designed ligands against the receptor SARS CoV-2 Papain-like protease (PLpro). LigandL10 incorporating the oxadiazole ring system displayed better binding affinity than the control 5-acetamido-2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benzamide. Further, the docked complex of LigandL10 was subjected to molecular dynamics (MD) simulation to examine the molecular mechanisms of protein-ligand interactions. The results of the present study are encouraging. Ligand L10 emerged as the most potent ligand in the series and could be considered for further research for the development of potential therapeutics for the treatment of COVID-19.
Collapse
Affiliation(s)
- Shipra Bhati
- Department of Chemistry, The Oxford College of Engineering, Bommanhalli, Bangalore, 560068, Karnataka, India
| |
Collapse
|