1
|
Manickasundaram S, Jeganmohan M. Cobalt(II)-Catalyzed [2 + 2 + 2]/[4 + 2] Cycloaddition of 1,6-Heptadiynes with Maleimides. J Org Chem 2025; 90:5109-5119. [PMID: 40183497 DOI: 10.1021/acs.joc.4c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
An efficient method for the synthesis of the polycyclic molecules via cobalt-catalyzed [2 + 2 + 2] followed by [4 + 2] consecutive cycloaddition reaction strategy has been devised. Sequential cycloaddition reactions of substituted 1,6-diynes with maleimides have been performed. This tandem cycloaddition approach has yielded polyheterocyclic compounds exhibiting remarkable diastereoselectivity and achieving yields ranging from good to excellent. Additionally, a potential reaction mechanism has been proposed to explain the observed cycloaddition process.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
2
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Dutta A, Jeganmohan M. Synthesis of Aryl Naphthoquinones and Maleimides via Pd(II)-Catalyzed Template-Assisted m-C(sp 2)-H Functionalization Reaction. Chemistry 2024; 30:e202402162. [PMID: 39133892 DOI: 10.1002/chem.202402162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
An efficient approach for the synthesis of substituted aryl naphthoquinones via a Pd(II)-catalyzed template-assisted m-C(sp2)-H bond functionalization reaction of arylmethane sulfonates have been demonstrated. The method involves usage of less expensive and abundant pharmacologically important scaffold naphthoquinone. A wide range of arylmethane sulfonates were examined and found to be compatible with the protocol. The protocol has also been further extended to the synthesis of various substituted aryl maleimide scaffolds. A plausible reaction mechanism has also been proposed to account for the selective distal m-C(sp2)-H bond functionalization reaction.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
4
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
5
|
Zeng Z, Hu J, Xiao G, Liu Y, Jia D, Wu G, Xie C, Li S, Bi X. Integrating network toxicology and molecular docking to explore the toxicity of the environmental pollutant butyl hydroxyanisole: An example of induction of chronic urticaria. Heliyon 2024; 10:e35409. [PMID: 39170477 PMCID: PMC11336633 DOI: 10.1016/j.heliyon.2024.e35409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The study aimed to comprehensively investigate environmental pollutants' potential toxicity and underlying molecular mechanisms, focusing on chronic urticaria (CU) induced by butylated hydroxyanisole (BHA) exposure, further drawing public awareness regarding the potential risks of environmental pollutants, applying ChEMBL, STITCH, and SwissTargetPrediction databases to predict the targets of BHA, CTD, GeneCards, and OMIM databases to collect the relevant targets of CU. Ultimately, we identified 81 potential targets of BHA-induced CU and extracted 31 core targets, including TNF, SRC, CASP3, BCL2, IL2, and MMP9. GO and KEGG enrichment analyses revealed that these core targets were predominantly involved in cancer signaling, estrogen and endocrine resistance pathways. Furthermore, molecular docking confirmed the ability of BHA to bind with core targets. The onset and development of CU may result from BHA by affecting multiple immune signaling pathways. Our study elucidated the molecular mechanisms of BHA toxicity and its role in CU induction, providing the basis for preventing and treating chronic urticaria associated with environmental BHA exposure.
Collapse
Affiliation(s)
- Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaoting Hu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guanlin Xiao
- Guangdong Provincial Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Yanchang Liu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dezheng Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guangying Wu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Canhui Xie
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sumei Li
- Guangdong Provincial Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Xiaoli Bi
- Guangdong Provincial Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| |
Collapse
|
6
|
Schuster D, Khanppnavar B, Kantarci I, Mehta V, Korkhov VM. Structural insights into membrane adenylyl cyclases, initiators of cAMP signaling. Trends Biochem Sci 2024; 49:156-168. [PMID: 38158273 DOI: 10.1016/j.tibs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Membrane adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. As effector proteins of G protein-coupled receptors and other signaling pathways, ACs receive and amplify signals from the cell surface, translating them into biochemical reactions in the intracellular space and integrating different signaling pathways. Despite their importance in signal transduction and physiology, our knowledge about the structure, function, regulation, and molecular interactions of ACs remains relatively scarce. In this review, we summarize recent advances in our understanding of these membrane enzymes.
Collapse
Affiliation(s)
- Dina Schuster
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | - Ilayda Kantarci
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Ved Mehta
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| |
Collapse
|
7
|
Li H, Lu Y, Xu N, Jin X, Chen T, Yu J, Liu J. Rhodium(III)-Catalyzed C-H Cascade Annulation of Arylhydrazines with 2-Diazo-1,3-indandiones for the Synthesis of Tetracyclic Indeno[1,2- b]indoles. J Org Chem 2024. [PMID: 38176055 DOI: 10.1021/acs.joc.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
An efficient approach for the preparation of tetracyclic indeno[1,2-b]indoles via Rh(III)-catalyzed C-H cascade annulation between arylhydrazines and diazo indan-1,3-diones has been established. In addition, a series of indeno[1,2-b]indoles were obtained in up to 96% yield with a wide range of substrates and high functional group tolerance. Finally, the diverse transformations of the desired products demonstrate the synthetic utility and utilization of this protocol.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Tao Chen
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Yu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
8
|
Cai X, Song X, Zhu Q, Zhang X, Fan X. Concise Synthesis of Spirocyclic Dihydrophthalazines through Spiroannulation Reactions of Aryl Azomethine Imines with Cyclic Diazo Compounds. J Org Chem 2022; 87:11048-11062. [PMID: 35921479 DOI: 10.1021/acs.joc.2c01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spiroannulation reactions are fundamental and invaluable for the synthesis of spirocyclic compounds. Presented herein are novel cascade reactions of aryl azomethine imines with cyclic diazo compounds leading to the formation of spirocyclic dihydrophthalazine derivatives. Based on experimental mechanistic studies, the formation of the title products is believed to go through azomethine imine-assisted cylcometalation, Rh-carbene formation through dediazonization, and migratory insertion followed by reductive elimination and azomethine imine ring opening. Control experiments revealed that air acts as an effective and sustainable co-oxidant to facilitate the cascade reaction. In general, this concise synthesis of the unprecedented spirocyclic dihydrophthalazine derivatives has advantages such as easily accessible substrates, good functional group compatibility, mild reaction conditions, high efficiency and selectivity, and excellent atom-economy. In addition, the value of this protocol is underlined by its ready scalability and divergent derivation of products.
Collapse
Affiliation(s)
- Xinyuan Cai
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xia Song
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qiuhui Zhu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Wei Y, Yu N, Zhu Y, Jia C, Xiao Y, Zhao Y, Cai P, Zhao W, Ju M, Wu T, Gan Z, Sun A. Characterization of blueberry (Vaccinium corymbosum L.) catechol oxidases III binding mechanism in response to selected substrates and inhibitors. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Xiao C, Cheng S, Lin H, Weng Z, Peng P, Zeng D, Du X, Zhang X, Yang Y, Liang Y, Huang R, Chen C, Wang L, Wu H, Li R, Wang X, Zhang R, Yang Z, Li X, Cao X, Yang W. Isoforskolin, an adenylyl cyclase activator, attenuates cigarette smoke-induced COPD in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153701. [PMID: 34438230 DOI: 10.1016/j.phymed.2021.153701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by limited airflow due to pulmonary and alveolar abnormalities from exposure to cigarette smoke (CS). Current therapeutic drugs are limited and the development of novel treatments to prevent disease progression is challenging. Isoforskolin (ISOF) from the plant Coleus forskohlii is an effective activator of adenylyl cyclase (AC) isoforms. Previously we found ISOF could attenuate acute lung injury in animal models, while the effect of ISOF on COPD has not been elucidated. PURPOSE In this study, we aimed to evaluate the efficacy of ISOF on COPD and reveal its potential mechanisms. METHODS A rat model of COPD was established by long-term exposure to CS, then the rats were orally administered with ISOF (0.5, 1 and 2 mg/kg). The pulmonary function, lung morphology, inflammatory cells and cytokines in serum or bronchoalveolar lavage fluid (BALF) were evaluated. Transcriptomics, proteomics and network pharmacology analysis were utilized to identify potential mechanisms of ISOF. Droplet digital PCR was used to detect the mRNA expression of AC1-10 in donor lung tissues. AC activation was determined in recombinant human embryonic kidney 293 (HEK293) cells stably expressing human AC isoforms. In addition, ISOF caused trachea relaxation ex vivo were assessed in isolated trachea rings from guinea pigs. RESULTS ISOF significantly ameliorated pathological damage of lung tissue and improved pulmonary function in COPD rats. ISOF treatment decreased the number of inflammatory cells in peripheral blood, and also the levels of pro-inflammatory cytokines in serum and BALF. Consistent with omics-based analyses, ISOF markedly downregulated the mTOR level in lung tissue. Flow cytometry analysis revealed that ISOF treatment reduced the ratio of Th17/Treg cells in peripheral blood. Furthermore, the expression levels of AC1 and AC2 are relatively higher than other AC isoforms in normal lung tissues, and ISOF could potently activate AC1 and AC2 in vitro and significantly relax isolated guinea pig trachea. CONCLUSION Collectively, our studies suggest that ISOF exerts its anti-COPD effect by improving lung function, anti-inflammation and trachea relaxation, which may be related to AC activation, mTOR signaling and Th17/Treg balance.
Collapse
Affiliation(s)
- Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Peihua Peng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Deyou Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xiaohua Du
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xiujuan Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yaqing Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yaping Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Rong Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Chen Chen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hongxiang Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Rongping Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming 650500, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
11
|
Wei Y, Yu N, Zhu Y, Hao J, Shi J, Lei Y, Gan Z, Jia G, Ma C, Sun A. Exploring the biochemical properties of three polyphenol oxidases from blueberry (Vaccinium corymbosum L.). Food Chem 2020; 344:128678. [PMID: 33267982 DOI: 10.1016/j.foodchem.2020.128678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Purification of blueberry polyphenol oxidase (PPO) has not been substantially progressed for a long time, which leads to little further study. We purified three PPOs from blueberries for the first time by modified Native-Page. The PPO-2 consists of two subunits (68 and 36 kDa), whereas PPO-3 and PPO-4 contain only one subunit (36 kDa). The optimum pH and temperature of PPO-2, PPO-3, and PPO-4 were 5.8-6.2 and 40 °C-45 °C with catechol as a substrate. The optimal substrates for them were all catechol (Km = 14.91, 7.19, and 11.20, respectively). High-pressure processing (HPP) had a limited inhibitory effect on the three PPOs. The activities of PPO-2, PPO-3, and PPO-4 were significantly reduced with increased SDS concentration. The binding of substrate to catalytic cavity is related to the residues His76, His209, His213, Gly228, and Phe230. The carbonyl group of residue Gly228 is one of the key sites for screening substrates.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ning Yu
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yue Zhu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jingyi Hao
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junyan Shi
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lei
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zhilin Gan
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Guoliang Jia
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Aidong Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|