1
|
Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-Binding Cassette and Solute Carrier Transporters: Understanding Their Mechanisms and Drug Modulation Through Structural and Modeling Approaches. Pharmaceuticals (Basel) 2024; 17:1602. [PMID: 39770445 PMCID: PMC11676857 DOI: 10.3390/ph17121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters play pivotal roles in cellular transport mechanisms, influencing a wide range of physiological processes and impacting various medical conditions. Recent advancements in structural biology and computational modeling have provided significant insights into their function and regulation. This review provides an overview of the current knowledge of human ABC and SLC transporters, emphasizing their structural and functional relationships, transport mechanisms, and the contribution of computational approaches to their understanding. Current challenges and promising future research and methodological directions are also discussed.
Collapse
Affiliation(s)
- Ahmad Elbahnsi
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Isabelle Callebaut
- Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie—IMPMC, Sorbonne Université, 75005 Paris, France
| | - Alexandre Hinzpeter
- CNRS, INSERM, Institut Necker Enfants Malades—INEM, Université Paris Cité, 75015 Paris, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
2
|
Ravatin M, Odolczyk N, Servel N, Guijarro JI, Tagat E, Chevalier B, Baatallah N, Corringer PJ, Lukács GL, Edelman A, Zielenkiewicz P, Chambard JM, Hinzpeter A, Faure G. Design of Crotoxin-Based Peptides with Potentiator Activity Targeting the ΔF508NBD1 Cystic Fibrosis Transmembrane Conductance Regulator. J Mol Biol 2023; 435:167929. [PMID: 36566799 DOI: 10.1016/j.jmb.2022.167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
We have previously shown that the CBb subunit of crotoxin, a β-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.
Collapse
Affiliation(s)
- Marc Ravatin
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Norbert Odolczyk
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Nathalie Servel
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Biological NMR and HDX-MS Technological Platform, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Eric Tagat
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Benoit Chevalier
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Nesrine Baatallah
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Gergely L Lukács
- Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Aleksander Edelman
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Piotr Zielenkiewicz
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jean-Marie Chambard
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Alexandre Hinzpeter
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France.
| | - Grazyna Faure
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
3
|
In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators. Int J Mol Sci 2022; 23:ijms231810758. [PMID: 36142670 PMCID: PMC9502978 DOI: 10.3390/ijms231810758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin–Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.
Collapse
|
4
|
Rapedius M, Obergrussberger A, Humphries ESA, Scholz S, Rinke-Weiss I, Goetze TA, Brinkwirth N, Rotordam MG, Strassmaier T, Randolph A, Friis S, Liutkute A, Seibertz F, Voigt N, Fertig N. There is no F in APC: Using physiological fluoride-free solutions for high throughput automated patch clamp experiments. Front Mol Neurosci 2022; 15:982316. [PMID: 36072300 PMCID: PMC9443850 DOI: 10.3389/fnmol.2022.982316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fluoride has been used in the internal recording solution for manual and automated patch clamp experiments for decades because it helps to improve the seal resistance and promotes longer lasting recordings. In manual patch clamp, fluoride has been used to record voltage-gated Na (NaV) channels where seal resistance and access resistance are critical for good voltage control. In automated patch clamp, suction is applied from underneath the patch clamp chip to attract a cell to the hole and obtain a good seal. Since the patch clamp aperture cannot be moved to improve the seal like the patch clamp pipette in manual patch clamp, automated patch clamp manufacturers use internal fluoride to improve the success rate for obtaining GΩ seals. However, internal fluoride can affect voltage-dependence of activation and inactivation, as well as affecting internal second messenger systems and therefore, it is desirable to have the option to perform experiments using physiological, fluoride-free internal solution. We have developed an approach for high throughput fluoride-free recordings on a 384-well based automated patch clamp system with success rates >40% for GΩ seals. We demonstrate this method using hERG expressed in HEK cells, as well as NaV1.5, NaV1.7, and KCa3.1 expressed in CHO cells. We describe the advantages and disadvantages of using fluoride and provide examples of where fluoride can be used, where caution should be exerted and where fluoride-free solutions provide an advantage over fluoride-containing solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
5
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
6
|
Bandiera T, Galietta LJV. Pharmacological approaches to cystic fibrosis. Eur J Med Chem 2021; 216:113240. [PMID: 33691259 DOI: 10.1016/j.ejmech.2021.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tiziano Bandiera
- D3 PharmaChemistry Line, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
7
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
8
|
Recent Strategic Advances in CFTR Drug Discovery: An Overview. Int J Mol Sci 2020; 21:ijms21072407. [PMID: 32244346 PMCID: PMC7177952 DOI: 10.3390/ijms21072407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Collapse
|