1
|
Chiodi D, Ishihara Y. Tertiary Alcohol: Reaping the Benefits but Minimizing the Drawbacks of Hydroxy Groups in Drug Discovery. J Med Chem 2025; 68:7889-7913. [PMID: 40231785 DOI: 10.1021/acs.jmedchem.4c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Among the smaller substituents in the medicinal chemist's toolbox, the hydroxy (OH) group can bestow one of the largest impacts in the drug-like properties of a molecule. A previous study showed that an H-to-OH structural modification effectively decreases lipophilicity, increases solubility, and decreases hERG inhibition. Despite these benefits, an OH group is not always recommended in drug molecules because it presents a metabolic "soft spot" for oxidation and glucuronidation in primary and secondary alcohols. Furthermore, the OH group presents challenges in permeability. In contrast, tertiary alcohols (3° ROH) often display an improved metabolic profile because oxidation at the 3° ROH is not possible, and the geminal alkyl groups could sterically shield the OH group from glucuronidation and permeability challenges. Through a series of matched molecular pairs, this Perspective highlights the 3° ROH as a motif that can reap the benefits but minimize the drawbacks of hydroxy groups in drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Genesis Therapeutics, 11568 Sorrento Valley Road Suite 8, San Diego, California 92121, United States
| |
Collapse
|
2
|
Liang Y, Lin W, Chen Y, Yang W, Zhou X, Ai S, Qiu L, Cao R, Wang J. Synthesis and in vitro and in vivo evaluation of novel bivalent quinolines as antitumor agents via targeting autophagy in cervical cancer. Eur J Med Chem 2025; 288:117421. [PMID: 39987834 DOI: 10.1016/j.ejmech.2025.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
A series of novel bivalent quinolines with a spacer of four to six methylene units between the phenoxy group in the position-7 and various substituents in the position-4 of quinoline skeleton, respectively, were synthesized and evaluated as anticancer agents. The data showed that the majority of the compounds had significant antiproliferative activity with IC50 values less than 50 μM against human cancer cell lines. Among them, compound 4b exhibited the strongest antiproliferative activity against HCT116, A549, BGC823, HeLa and MCF-7 cell lines with an IC50 values of 0.26, 2.75, 4.06, 3.71 and 3.08 μM, respectively. Further studies on the anticancer effects in mice of compound 4b showed its capacity to inhibit tumor growth and markedly reduce tumor size of cervical cancer. Moreover investigation on the underlying mechanism of action indicated that compound 4b didn't trigger apoptotic processes in cervical cancer cell lines, but inhibit cervical cancer growth through inducing autophagy via the ATG5/ATG7 pathway.
Collapse
Affiliation(s)
- Yuexiu Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510275, PR China; Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, PR China
| | - Wenxian Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yuzhen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, 533000, PR China
| | - Weijie Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaoyu Zhou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, 533000, PR China
| | - Shishen Ai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liqin Qiu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Rihui Cao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Junli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510275, PR China; Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, PR China.
| |
Collapse
|
3
|
Dhull A, Wei J, Pulukuri AJ, Rani A, Sharma R, Mesbahi N, Yoon H, Savoy EA, Xaivong Vi S, Goody KJ, Berkman CE, Wu BJ, Sharma A. PSMA-targeted dendrimer as an efficient anticancer drug delivery vehicle for prostate cancer. NANOSCALE 2024; 16:5634-5652. [PMID: 38440933 DOI: 10.1039/d3nr06520k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men in the United States. Although early-stage treatments exhibit promising 5-year survival rates, the treatment options for advanced stage disease are constrained, with short survival benefits due to the challenges associated with effective and selective drug delivery to PCa cells. Even though targeting Prostate Specific Membrane Antigen (PSMA) has been extensively explored and is clinically employed for imaging and radio-ligand therapy, the clinical success of PSMA-based approaches for targeted delivery of chemotherapies remains elusive. In this study, we combine a generation 4 hydroxy polyamidoamine dendrimer (PD) with irreversible PSMA ligand (CTT1298) to develop a PSMA-targeted nanoplatform (PD-CTT1298) for selective intracellular delivery of potent chemotherapeutics to PCa. PD-CTT1298-Cy5 exhibits a PSMA IC50 in the nanomolar range and demonstrates selective uptake in PSMA (+) PCa cells via PSMA mediated internalization. When systemically administered in a prostate tumor xenograft mouse model, PD-CTT1298-Cy5 selectively targets PSMA (+) tumors with significantly less accumulation in PSMA (-) tumors or upon blocking of the PSMA receptors. Moreover, the dendrimer clears rapidly from the off-target organs limiting systemic side-effects. Further, the conjugation of an anti-cancer agent, cabozantinib to the PSMA-targeted dendrimer translates to a significantly enhanced anti-proliferative activity in vitro compared to the free drug. These findings highlight the potential of PD-CTT1298 nanoplatform as a versatile approach for selective delivery of high payloads of potent chemotherapeutics to PCa, where dose related systemic side-effects are a major concern.
Collapse
Affiliation(s)
- Anubhav Dhull
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Anunay James Pulukuri
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Anu Rani
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Rishi Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Nooshin Mesbahi
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Hosog Yoon
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Emily A Savoy
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Sylvia Xaivong Vi
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Kenneth John Goody
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Clifford E Berkman
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Anjali Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
4
|
Zhuo L, Guo M, Zhang S, Wu J, Wang M, Shen Y, Peng X, Wang Z, Jiang W, Huang W. Structure-activity relationship study of 1,6-naphthyridinone derivatives as selective type II AXL inhibitors with potent antitumor efficacy. Eur J Med Chem 2024; 265:116090. [PMID: 38169272 DOI: 10.1016/j.ejmech.2023.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The role of AXL in various oncogenic processes has made it an attractive target for cancer therapy. Currently, kinase selectivity profiles, especially circumventing MET inhibition, remain a scientific issue of great interest in the discovery of selective type II AXL inhibitors. Starting from a dual MET/AXL-targeted lead structure from our previous work, we optimized a 1,6-naphthyridinone series using molecular modeling-assisted compound design to improve AXL potency and selectivity over MET, resulting in the potent and selective type II AXL-targeted compound 25c. This showed excellent AXL inhibitory activity (IC50 = 1.1 nM) and 343-fold selectivity over the highly homologous kinase MET in biochemical assays. Moreover, compound 25c significantly inhibited AXL-driven cell proliferation, dose-dependently suppressed 4T1 cell migration and invasion, and induced apoptosis. Compound 25c also showed noticeable antitumor efficacy in a BaF3/TEL-AXL xenograft model at well-tolerated doses. Overall, this study presented a potent and selective type II AXL-targeted lead compound for further drug discovery.
Collapse
Affiliation(s)
- Linsheng Zhuo
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengqin Guo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Mingshu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yang Shen
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Nan X, Li X, Wu Y, Li H, Wang Q, Xing S, Liang Z. Design, synthesis and biological evaluation of sulfonylamidines as potent c-Met inhibitors by enhancing hydrophobic interaction. Org Biomol Chem 2023; 21:7459-7466. [PMID: 37667983 DOI: 10.1039/d3ob01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The dysregulation of c-Met kinase has emerged as a significant contributing factor for the occurrence, progression, poor clinical outcomes and drug resistance of various human cancers. In our ongoing pursuit to identify promising c-Met inhibitors as potential antitumor agents, a docking study of the previously reported c-Met inhibitor 7 revealed a large unoccupied hydrophobic pocket, which could present an opportunity for further exploration of structure-activity relationships to improve the binding affinity with the allosteric hydrophobic back pocket of c-Met. Herein we performed structure-activity relationship and molecular modeling studies based on lead compound 7. The collective endeavors culminated in the discovery of compound 21j with superior efficacy to 7 and positive control foretinib by increasing the hydrophobic interaction with the hydrophobic back pocket of c-Met active site.
Collapse
Affiliation(s)
- Xiang Nan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Xin Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Yanchao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Huijing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Shaojun Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
6
|
Sachkova AA, Andreeva DV, Tikhomirov AS, Scherbakov AM, Salnikova DI, Sorokin DV, Bogdanov FB, Rysina YD, Shchekotikhin AE, Shchegravina ES, Fedorov AY. Design, Synthesis and In Vitro Investigation of Cabozantinib-Based PROTACs to Target c-Met Kinase. Pharmaceutics 2022; 14:pharmaceutics14122829. [PMID: 36559322 PMCID: PMC9781691 DOI: 10.3390/pharmaceutics14122829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: This investigation aimed at developing a series of c-Met-targeting cabozantinib-based PROTACs. (2) Methods: Purification of intermediate and target compounds was performed using column chromatography, in vitro antiproliferation activity was measured using a standard MTT assay and a c-Met degradation assay was performed via the immunoblotting technique. (3) Results: Several compounds exhibited antiproliferative activity towards different cell lines of breast cancer (T47D, MDA-MB-231, SKBR3, HCC1954 and MCF7) at the same level as parent cabozantinib and 7-demethyl cabozantinib. Two target conjugates, bearing a VHL-ligand as an E3-ligase binding moiety and glycol-based linkers, exhibited the effective inhibition of c-Met phosphorylation and an ability to decrease the level of c-Met in HCC1954 cells at micromolar concentrations. (4) Conclusions: Two compounds exhibit c-Met inhibition activity in the nanomolar range and can be considered as PROTAC molecules due to their ability to decrease the total level of c-Met in HCC1954 cells. The structures of the offered compounds can be used as starting points for further evaluation of cabozantinib-based PROTACs.
Collapse
Affiliation(s)
- Anastasia A. Sachkova
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | - Daria V. Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | | | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Fedor B. Bogdanov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
| | - Yulia D. Rysina
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | | | - Ekaterina S. Shchegravina
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
- Correspondence: (E.S.S.); (A.Y.F.); Tel.: +7-906-359-74-49 (E.S.S.)
| | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
- Correspondence: (E.S.S.); (A.Y.F.); Tel.: +7-906-359-74-49 (E.S.S.)
| |
Collapse
|
7
|
Synthesis of novel 4,7-disubstituted quinoline derivatives as autophagy inducing agents via targeting stabilization of ATG5. Bioorg Chem 2022; 127:105998. [DOI: 10.1016/j.bioorg.2022.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
8
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
9
|
Chu C, Rao Z, Pan Q, Zhu W. An updated patent review of small-molecule c-Met kinase inhibitors (2018-present). Expert Opin Ther Pat 2021; 32:279-298. [PMID: 34791961 DOI: 10.1080/13543776.2022.2008356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION c-Met tyrosine kinase receptor is a high-affinity ligand of hepatocyte growth factor (HGF). c-Met is widely expressed in a variety of normal human tissues, but shows abnormally high expression, amplification or mutation in tumour tissues such as lung, gastric and breast cancers. Therefore, the use of c-Met as a target can achieve the inhibition of a series of abnormal physiological processes such as tumourigenesis, development and metastasis. A number of small molecule tyrosine kinase inhibitors targeting c-Met have been successfully marketed. AREAS COVERED This article reviews recent advances in patented c-Met small molecule inhibitors and their inhibitory activity against various cancer cells from 2018 to date. EXPERT OPINION To date, small molecule inhibitors targeting c-Met have demonstrated impressive therapeutic efficacy in the clinical setting. Most recent patents have focused on addressing the direction of c-Met amplification and overexpression. Despite the great success in the development of selective c-Met inhibitors, the effects of bypass secretion and mutagenesis have led to a need for new c-Met small molecule inhibitors that are safe, efficient, selective and less toxic with novel structures and effective against other targets.
Collapse
Affiliation(s)
- Cilong Chu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Zixuan Rao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Kavalapure RS, Alegaon SG, Venkatasubramanian U, Priya AS, Ranade SD, Khanal P, Mishra S, Patil D, Salve PS, Jalalpure SS. Design, synthesis, and molecular docking study of some 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases as potential Eg5 inhibitory agents. Bioorg Chem 2021; 116:105381. [PMID: 34601297 DOI: 10.1016/j.bioorg.2021.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
In Search of new microtubule-targeting compounds and to identify a promising Eg5 inhibitory agents, a series of 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases molecules (6 a-r) were synthesized using appropriate synthetic method. The synthesized compounds were characterized by using FTIR, Proton NMR, Carbon NMR and mass spectral analysis. All eighteen compounds were evaluated for their Eg5 inhibitory activity. Among the evaluated compounds, only seven compounds are shown inhibitory activity. The results of Steady state ATPase reveled that compounds 6b, 6l and 6p exhibited promising inhibitory activity with IC50 Values of 2.720 ± 0.69, 2.676 ± 0.53 and 2.408 ± 0.46 respectively. Malachite Green Assay results reveled that 6q compound showed better inhibitory activity with IC50 Value of 0.095 ± 0.27. In vitro antioxidant capacity of the synthesized compounds was investigated. A molecular docking studies were performed to evaluate interaction in to binding site of kinesin spindle protein, these interaction influencing may support Eg5 inhibitory activity. The drug like parameters of the eighteen synthesized compounds were also computed using Qikprop software. In conclusion, some of 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff base compounds represent promising drug like agents for discovery of effective anticancer molecules.
Collapse
Affiliation(s)
- Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.
| | - U Venkatasubramanian
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613 401, India
| | - A Soundarya Priya
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613 401, India
| | - Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Pukar Khanal
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Sanjay Mishra
- KAHER's Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Dhanashree Patil
- KAHER's Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Preeti S Salve
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Sunil S Jalalpure
- KAHER's Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India; Department of Pharmacognosy, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| |
Collapse
|
11
|
El-Wakil MH, Teleb M. Transforming Type II to Type I c-Met kinase inhibitors via combined scaffold hopping and structure-guided synthesis of new series of 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives. Bioorg Chem 2021; 116:105304. [PMID: 34534756 DOI: 10.1016/j.bioorg.2021.105304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
Novel 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives 3a-e, 4a-f and 5a-f were designed as Type I c-Met kinase inhibitors based on scaffold hopping of our previous Type II c-Met kinase lead. Target compounds were then synthesized under the guidance of molecular docking analysis to identify the potential inhibitors that fit the binding pocket of c-Met kinase in the characteristic manner as the reported Type I c-Met kinase inhibitors. All synthesized derivatives were evaluated for their c-Met kinase inhibitory activity at 10 µM concentration, where 3d, 5d and 5f displayed >80% inhibition. Further IC50 investigation of these compounds identified 5d as the most potent c-Met kinase inhibitor with IC50 value of 1.95 µM. Moreover, 5d showed selective antitumor activity against c-Met over-expressing colon HCT-116 and lung A549 adenocarcinoma cells with IC50 values of 6.18 and 10.6 µg/ml, respectively. More significantly, 5d effectively inhibited c-Met phosphorylation in the Western blot experiment. Also, 5d induced cellular apoptosis in HCT-116 cancer cells as well as cell cycle arrest with accumulation of cells in G2/M phase. Finally, kinase selectivity profiling of 5d against nine oncogenic kinases revealed its selectivity to only Tyro3 kinase (% inhibition = 80%, IC50 = 3 µM). All these experimental findings clearly demonstrate that 5d is a potential dual acting inhibitor against c-Met and Tyro3 kinases, standing out as a viable lead that deserves further investigation and development to new generation of antitumor agents.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
12
|
Antiproliferative effect, alteration of cancer cell cycle progression and potential MET kinase inhibition induced by 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives. Eur J Pharmacol 2021; 894:173850. [PMID: 33428899 DOI: 10.1016/j.ejphar.2021.173850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer continues to be the second leading cause of death worldwide. Discovery of novel therapeutic agents has crucial importance for improvement of our medical management capabilities. Dysregulation of the MET receptor tyrosine kinase pathway plays an important role in cancer progression, making this receptor an attractive molecular target for anticancer drug discovery. In this study, twenty-seven 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives were synthesized and their cancer cell growth inhibitory activity was examined against MCF-7, HT-29 and MOLT-4 cells and also NIH/3T3 non-cancer cells by MTT assay. The antiproliferative effect of the most potent derivatives were tested against MET-dependent EBC-1 and MKN-45, lung and gastric cancer cell lines, respectively. MET kinase inhibition was measured by a Homogenous Time Resolved Fluorescence (HTRF) Assay. The influence of the test compounds on cell cycle was examined by RNase/PI flow cytometric assay. A number of compounds exhibited considerable antiproliferative effects against breast and colon cancer and leukemia cell lines, relatively sparing non-cancer cells. Some derivatives bearing benzothiazolyl carboxamide moiety at C5 position (15, 21, 23, 31, and 37) showed the highest activities with IC50 values as low as 10.9 μM. These compounds showed antiproliferative effects also against MET-amplified cells and dose-dependently inhibited MET kinase activity. They also induced G0/G1 cell cycle arrest at lower doses and apoptosis at higher doses. Molecular docking and dynamics simulation studies confirmed the interaction of compound 23 with the active site of the MET receptor. These findings demonstrate that 3,4-dihydropyrimidin-2(1H)-one analogues may represent promising targeted anticancer agents.
Collapse
|
13
|
Zhuo LS, Wu FX, Wang MS, Xu HC, Yang FP, Tian YG, Zhao XE, Ming ZH, Zhu XL, Hao GF, Huang W. Structure-activity relationship study of novel quinazoline-based 1,6-naphthyridinones as MET inhibitors with potent antitumor efficacy. Eur J Med Chem 2020; 208:112785. [PMID: 32898795 DOI: 10.1016/j.ejmech.2020.112785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 01/25/2023]
Abstract
As a privileged scaffold, the quinazoline ring is widely used in the development of EGFR inhibitors, while few quinazoline-based MET inhibitors are reported. In our ongoing efforts to develop new MET-targeted anticancer drug candidates, a series of quinazoline-based 1,6-naphthyridinone derivatives were designed, synthesized, and evaluated for their biological activities. The preliminary SARs studies indicate that the quinazoline scaffold was also acceptable for the block A of class II MET inhibitors. The further pharmacokinetic studies led to the identification of the most promising compound 22a with favorable in vitro potency (MET, IC50 = 9.0 nM), human microsomal metabolic stability (t1/2 = 621.2 min) and oral bioavailability (F = 42%). Moreover, 22a displayed good in vivo antitumor efficacy (IR of 81% in 75 mg/kg) in MET-positive human glioblastoma U-87 MG xenograft model. These positive results indicated that 22a is a potential new MET-targeted antitumor drug lead, which is worthy of further development.
Collapse
Affiliation(s)
- Lin-Sheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Feng-Xu Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Fan-Peng Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yan-Guang Tian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Xing-E Zhao
- Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, 210042, PR China
| | - Zhi-Hui Ming
- Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, 210042, PR China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
14
|
Grignard Reagent Utilization Enables a Practical and Scalable Construction of 3-Substituted 5-Chloro-1,6-naphthyridin-4-one Derivatives. Molecules 2020; 25:molecules25235667. [PMID: 33271818 PMCID: PMC7730554 DOI: 10.3390/molecules25235667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
A robust, practical, and scalable approach for the construction of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 via the addition of Grignard reagents to 4-amino-2-chloronicotinonitrile (15) was developed. Starting with various Grignard reagents, a wide range of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 were conveniently synthesized in moderate-to-good yields through addition–acidolysis–cyclocondensation. In addition, the robustness and applicability of this synthetic route was proven on a 100 g scale, which would enable convenient sample preparation in the preclinical development of 1,6-naphthyridin-4-one-based MET-targeting antitumor drug candidates.
Collapse
|
15
|
Dorababu A. Report on Recently (2017–20) Designed Quinoline‐Based Human Cancer Cell Growth Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry SRMPP Govt. First Grade College Huvinahadagali 583219 India
| |
Collapse
|
16
|
Design, synthesis and antitumor evaluation of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives as potential c-Met inhibitors. Bioorg Chem 2020; 104:104356. [PMID: 33142417 DOI: 10.1016/j.bioorg.2020.104356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
A series of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives (10a-10x) were designed, synthesized, and evaluated for their in vitro inhibitory activities against c-Met kinase and antiproliferative activities against the SH-SY5Y, MDA-MB-231, A549, and HepG2 cell lines. Most of the compounds remarkably inhibited c-Met kinase and showed moderate to good cytotoxicity and selectivity toward the four cancer cell lines. Among them, compounds 10b and 10f were the two most potent selective c-Met inhibitors with half-maximal inhibitory concentration (IC50) values of 5.17 ± 0.48 nM and 5.62 ± 0.78 nM, respectively, and suppression abilities comparable with the positive control cabozantinib. Cell proliferation assay further demonstrated that the two most promising compounds 10a and 10b also showed good cytotoxicity and selectivity toward MDA-MB-231 cells, with IC50 values of 26.67 ± 2.56 μM and 26.83 ± 2.41 μM, respectively. Compounds 10f and 10g showed cytotoxicity and selectivity toward A549 cells, with IC50 values of 20.20 ± 2.04 μM and 21.65 ± 1.58 μM, respectively. All antiproliferative activities were within the range of those of cabozantinib. Notably, these compounds presented relatively low hepatotoxicity compared with reference drugs. Moreover, the preliminary structure-activity relationship and docking studies revealed that replacement of a nitrogen-containing heterocycle on the R2 (block A) group might improve the c-Met kinase inhibitory and antiproliferative effects in MDA-MB-231 cells, whereas displacement by a substituted benzene ring, especially for the p-fluorophenyl or 4-fluoro-3-methoxyphenyl moiety, on the R2 group enhanced cytotoxicity toward A549 cells. Together, these results suggest that 10b and 10f are promising compounds and provide a basis for their development as new antitumor agents.
Collapse
|
17
|
Wang MS, Xu HC, Gong Y, Qu RY, Zhuo LS, Huang W. Efficient Arylation of 2,7-Naphthyridin-1(2 H)-one with Diaryliodonium Salts and Discovery of a New Selective MET/AXL Kinase Inhibitor. ACS COMBINATORIAL SCIENCE 2020; 22:457-467. [PMID: 32589005 DOI: 10.1021/acscombsci.0c00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New 8-chloro-2-phenyl-2,7-naphthyridin-1(2H)-one building blocks bearing diverse substitutes on the 2-phenyl group were synthesized via an efficient diaryliodonium salt-based N-arylation strategy with the advantage of mild conditions, short reaction times, and high yields. A small combinatorial library of 8-amino substituted 2-phenyl-2,7-naphthyridin-1(2H)-one was further conveniently constructed based on the above chlorinated naphthyridinones and substituted aniline. Preliminary biochemical screening resulted in the discovery of the new 2,7-naphthyridone-based MET/AXL kinase inhibitors. More importantly, 17c (IC50,MET of 13.8 nM) or 17e (IC50,AXl of 17.2 nM) and 17i (IC50,AXl of 31.8 nM) can efficient selectively inhibit MET or AXL kinase, respectively, while commercial cabozantinib showed no selectivity. The further exploration of the 8-substituted 2-phenyl-2,7-naphthyridin-1(2H)-one combinatorial library would significantly accelerate the discovery of more potent and selective inhibitors against diverse kinases.
Collapse
Affiliation(s)
- Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yi Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lin-Sheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|