1
|
Matussek M, Kurpanik-Wójcik A, Gogoc S, Fijołek A, Filapek M, Naumczuk B, Data P. Electroactive Dyes Based on 1,8-Naphthalimide with Acetylene Linkers as Promising OLED Materials - the Relationship Between Structure and Photophysical Properties. Chemistry 2023; 29:e202302115. [PMID: 37548079 DOI: 10.1002/chem.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Four A-π-D-π-A type small organic molecules with 1,8-naphthalimide motifs were successfully synthesised. The designed compounds are built of two 1,8-naphthalimide units linked via ethynyl π-linkages with selected functionalised donor motifs i. e. 2,2'-bithiophene, fluorene, phenothiazine and carbazole derivative. The synthesis based on Sonogashira cross-coupling allowed us to obtain the presented dyes with good yields. The resulting symmetrical small molecules' optical, electrochemical and thermal properties were thoroughly investigated, and their potential applicability for the OLED devices was demonstrated. In addition, the relationship between molecular structure and properties was considered by employing experimental and theoretical studies. As a result of using various donor groups, it was possible to achieve efficient electroluminescence in the range from green (DEV4) to orange-red light (DEV3) with a maximum luminance of 3 820 cd/m2 for DEV4. Upon the insertion of an acetylene linker to the designed molecules, the free rotation of D and A fragments, and hence the effective π-electron communication within the entire molecule, is possible, which was confirmed by DFT studies. The obtained dyes are characterised by high thermal stability, reversible oxidation-reduction process, satisfactory optoelectronic properties and good solubility in organic solvents, which is advisable for the application in small molecular organic light-emitting diodes (SM-OLEDs) technology.
Collapse
Affiliation(s)
- Marek Matussek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | | | - Szymon Gogoc
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100, Gliwice, Poland
| | - Aleksandra Fijołek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Michał Filapek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Beata Naumczuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Przemysław Data
- Department of Molecular Physics, Lodz University of Technology, Żeromskiego 116, 90-543, Łódź, Poland
| |
Collapse
|
2
|
Fluorescent probes in stomatology. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Wang Y, Zhao X, Chen Y, James TD, Wang G, Zhang H. Synergistically activated dual-locked fluorescent probes to monitor H 2S-induced DNA damage. Chem Commun (Camb) 2022; 58:10500-10503. [PMID: 36043365 DOI: 10.1039/d2cc04247a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalimide-based fluorescent probes (NAN0-N3 and NAN6-N3) were developed with dual locked fluorescence. Here, ≥1.9 × 10-2 mM of H2S and ≥2.2 × 10-2 μg mL-1 of DNA could unlock a highly sensitive off-on fluorescence response through synergistic changes of the molecular structure and conformation. As such, the probes could monitor DNA damage induced by the overexpression of H2S, and were able to evaluate the degree of apoptosis of living cells mediated by H2S-induced mtDNA or nDNA damage.
Collapse
Affiliation(s)
- Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaoli Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Yuehua Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
4
|
Cd2+ and Zn2+ fluorescence turn-on sensing and the subsequent detection of S2− by a quinolimide-based sensor in water and living cells with application in the combinational logic gate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Li L, Zhang Y, Yang J, Qu W, Cao H. A turn-on fluorescent sensor for Cd2+ and sequential detection of S2− using the quinolimide scaffold. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Ruiz-Arias Á, Jurado R, Fueyo-González F, Herranz R, Gálvez N, González-Vera JA, Orte A. Selecting FRET pairs for visualizing amyloid aggregation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Pengpeng X, Jiangtai C, Gaofan S, Mengmeng Z, Wanchen Y, Xiangde L, Dongdong Z. Research Progress of Naphthalimide Derivatives Optical Probes for Monitoring Physical and Chemical Properties of Microenvironment and Active Sulfur Substances. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Wang SS, Du SY, He X, Qi YM, Li XL, Rong RX, Cao ZR, Wang KR. Nucleus-targeting imaging and enhanced cytotoxicity based on naphthalimide derivatives. Bioorg Chem 2021; 115:105188. [PMID: 34314915 DOI: 10.1016/j.bioorg.2021.105188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Organelles possess critical biological effects in cellular processes. However, the relationship between organelle targeting and antitumour activity is a challenging issue. In this paper, a number of amide/acylhydrazine modified naphthalimide derivatives were designed and synthesized. Interestingly, amide modified naphthalimide derivatives NI-A-NH and NI-C-NH with (R)-piperdine and (S)-pyrrolidine functionalization exhibited enhanced cytotoxicity compared with acylhydrazine modified derivatives NI-A-2NH and NI-C-2NH. However, acylhydrazine modified derivatives NI-B-2NH and NI-D-2NH with (S)-piperdine and achiral piperdine conjugates possessed better cytotoxicity than NI-B-NH and NI-D-NH with amide modifications. Fluorescence imaging, DNA binding interactions and cell cycle analyses were further completed to clarify that the nucleus-targeting effects showed enhanced cytotoxic activity, strong DNA binding and the blocking of cells in S phase. These results provide a preliminary theoretical basis for the further design of organelle-targeting antitumour drugs.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China; Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Shao-Ying Du
- Nursing School, Hebei University, Baoding 071002, PR China
| | - Xu He
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China
| | - Yu-Ming Qi
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China
| | - Xiao-Liu Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China.
| | - Rui-Xue Rong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China; Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China.
| | - Zhi-Ran Cao
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China.
| |
Collapse
|
9
|
Rong R, Li J, Li Y, Guo X, Wang C, Li Y, Li J, Han B, Cao Z, Wang K, Li X. Synthesis and Anti-tumor Effects of Naphthalimide Derivatives Targeted in Cell Nucleus. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202008015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|