1
|
Zhang M, Yang W, Liu N, Tu J, Lin J, Dong G, Zhao D, Sheng C. Lanosterol 14α-Demethylase (CYP51)/Heat Shock Protein 90 (Hsp90) Dual Inhibitors for the Treatment of Invasive Candidiasis. J Med Chem 2025; 68:1668-1681. [PMID: 39754582 DOI: 10.1021/acs.jmedchem.4c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism. Among them, dual inhibitor MM4 exhibited potent in vitro and in vivo antifungal activity against Candida albicans and effectively inhibited important fungal virulence factors (e.g., hyphae, biofilm). Therefore, CYP51/Hsp90 dual inhibitors show great promise in the development of novel antifungal drugs to combat invasive candidiasis.
Collapse
Affiliation(s)
- Mingming Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Wanzhen Yang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Na Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Tu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jingsheng Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
2
|
Singh SK, Pancholi SS. Current Updates on Pathogenesis, Systemic Therapy, and Treatment of Invasive Fungal Infections. Curr Drug Targets 2025; 26:203-220. [PMID: 39421988 DOI: 10.2174/0113894501337502241015121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Numerous health hazards are associated with fungal infections, ranging from asymptomatic cases to potentially fatal invasive diseases that are especially dangerous for those with impaired immune systems. The main causes behind these diseases are opportunistic fungi, namely Aspergillus, Candida, and Cryptococcus. Invasive fungal infections (IFIs) require a global response that includes the development of vaccines, standardized protocols for diagnosis, potent antifungal medications, and strategies to stop drug-resistant strains. Improving high-risk group diagnosis and treatment is essential to lowering death rates. This review highlights the substantial health concerns associated with fungal infections, especially in immunocompromised individuals, and identifies Aspergillus, Candida, and Cryptococcus as the main pathogens. It highlights the necessity of international efforts, such as the development of novel diagnostic instruments, imaging methods, and antifungal drugs, to combat these invasive infections. The review also addresses the increasing need for novel treatment approaches in light of the developing resistance to widely used antifungal medications. Furthermore, the significance of secretory proteins in fungal pathogenicity and the potential of combination therapy are investigated. It is also suggested that a multimodal strategy be used to fight these illnesses, given the promise of multivalent vaccinations. Overall, this study emphasizes how critical it is to develop better diagnostic and treatment strategies in order to successfully control and lessen the impact of invasive fungal diseases on the health of the world.
Collapse
Affiliation(s)
- Sushil Kumar Singh
- Shree S.K. Patel College of Pharmaceutical Education and Research, Department of Pharmaceutical Technology, Ganpat University, Kherva, Mehsana, Gujarat 384012, India
| | - Shyam Sunder Pancholi
- School of Pharmacy and Technology Management, Department of Pharmaceutics (SPTM) SVKM's NMIMS (Deemed to be University) Mukesh Patel Technology Park, Babulde, Shirpur 425405, Dist. Dhule Maharashtra, India
| |
Collapse
|
3
|
Xue L, Yang L, Zhao B, Feng W, Yang J, Ma Y. Construction of Candida albicans pRB895-SAP2-SC5314 With SAP2 High Expression and Its Effects on Adhesion. J Clin Lab Anal 2025; 39:e25144. [PMID: 39727206 PMCID: PMC11776491 DOI: 10.1002/jcla.25144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND SAP2 is closely associated with the pathogenicity and drug resistance of Candida albicans (C. albicans). Our study aimed to construct C. albicans with SAP2 overexpression (pRB895-SAP2-SC5314) to explore the influence of SAP2 on the adhesion of C. albicans and predict the interaction between magnolol and Sap2 by molecular docking. METHODS The recombinant plasmid pRB895-SAP2 with high SAP2 expression was prepared using a plasmid extraction kit and transformed into C. albicans strain SC5314 using an improved lithium acetate conversion method to construct PRB895-SAP2-SC5314. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of adhesion-related genes in the different strains. Molecular docking and visual analysis of magnolol and Sap2 were performed using the CB-DOCK2 platform. RESULTS Compared with the control SC5341 and SC5341 transfected with pRB895, SAP2 expression was significantly higher in the pRB895-SAP2-SC5314 strain (p < 0.05). Based on the sequencing and mapping results, the pRB895-SAP2-SC5314 strain was successfully prepared. SAP2 overexpression significantly downregulated ALS1 expression (p < 0.05), whereas ALS3, TEC1, HOG1, PHR1, and TUP1 expression was downregulated in C. albicans (p < 0.05). The optimal docking result for magnolol and Sap2 protein was -8.1 kcal/mol of vina score, which was considered good docking. CONCLUSIONS SAP2 overexpression may strengthen the adhesion and pathogenicity of C. albicans, and magnolol may act as an Sap2 inhibitor that affects the adhesion of C. albicans.
Collapse
Affiliation(s)
- Lan Xue
- The Department of DermatovenereologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Lu Yang
- The Department of DermatovenereologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Bingqian Zhao
- The Department of DermatovenereologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Wenli Feng
- The Department of DermatovenereologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Jing Yang
- The Department of DermatovenereologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yan Ma
- The Department of DermatovenereologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
4
|
Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN. Extracellular BSA-degrading SAPs in the rare pathogen Meyerozyma guilliermondii strain SO as potential virulence factors in candidiasis. Microb Pathog 2024; 193:106773. [PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Lin L, Wang M, Zeng J, Mao Y, Qin R, Deng J, Ouyang X, Hou X, Sun C, Wang Y, Cai Y, Li M, Tian C, Zhou X, Zhang M, Fan H, Mei H, Sarapultsev A, Wang H, Zhang G, Zipfel PF, Hu Y, Hu D, Luo S. Sequence Variation of Candida albicans Sap2 Enhances Fungal Pathogenicity via Complement Evasion and Macrophage M2-Like Phenotype Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206713. [PMID: 37211685 PMCID: PMC10369283 DOI: 10.1002/advs.202206713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Candida albicans (C. albicans) is an opportunistic pathogen increasingly causing candidiasis worldwide. This study aims to investigate the pattern of systemic immune responses triggered by C. albicans with disease associated variation of Sap2, identifying the novel evasion strategies utilized by clinical isolates. Specifically, a variation in clinical isolates is identified at nucleotide position 817 (G to T). This homozygous variation causes the 273rd amino acid exchange from valine to leucine, close to the proteolytic activation center of Sap2. The mutant (Sap2-273L) generated from SC5314 (Sap2-273V) background carrying the V273L variation within Sap2 displays higher pathogenicity. In comparison to mice infected with Sap2-273V strain, mice infected with Sap2-273L exhibit less complement activation indicated by less serum C3a generation and weaker C3b deposition in the kidney. This inhibitory effect is mainly achieved by Sap2273L -mediated stronger degradation of C3 and C3b. Furthermore, mice infected with Sap2-273L strain exhibit more macrophage phenotype switching from M0 to M2-like and more TGF-β release which further influences T cell responses, generating an immunosuppressed cellular microenvironment characterized by more Tregs and exhausted T cell formation. In summary, the disease-associated sequence variation of Sap2 enhances pathogenicity by complement evasion and M2-like phenotype switching, promoting a more efficient immunosuppressed microenvironment.
Collapse
Affiliation(s)
- Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jingsi Zeng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yehong Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renjie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yadan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xi Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Min Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76, Lenin Prospekt, Chelyabinsk, 454080, Russia
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
7
|
Kulshrestha A, Gupta P. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol 2023; 18:295-309. [PMID: 37097060 DOI: 10.2217/fmb-2022-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| |
Collapse
|
8
|
Wang C, Zheng Y, Liu Z, Qian Y, Li Y, Yang L, Liu S, Liang W, Li J. The secreted FolAsp aspartic protease facilitates the virulence of Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2023; 14:1103418. [PMID: 36760509 PMCID: PMC9905682 DOI: 10.3389/fmicb.2023.1103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Pathogens utilize secretory effectors to manipulate plant defense. Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomatoes. We previously identified 32 secreted effector candidates by LC-MS analysis. In this study, we functionally identified one of the secreted proteins, FolAsp, which belongs to the aspartic proteases (Asp) family. The FolAsp was upregulated with host root specifically induction. Its N-terminal 1-19 amino acids performed the secretion activity in the yeast system, which supported its secretion in Fol. Phenotypically, the growth and conidia production of the FolAsp deletion mutants were not changed; however, the mutants displayed significantly reduced virulence to the host tomato. Further study revealed the FolAsp was localized at the apoplast and inhibited INF1-induced cell death in planta. Meanwhile, FolAsp could inhibit flg22-mediated ROS burst. Furthermore, FolAsp displayed protease activity on host protein, and overexpression of FolAsp in Fol enhanced pathogen virulence. These results considerably extend our understanding of pathogens utilizing secreted protease to inhibit plant defense and promote its virulence, which provides potential applications for tomato improvement against disease as the new drug target.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yaning Zheng
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Zhishan Liu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yongpan Qian
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yue Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limei Yang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Sihui Liu
- College of Science and Information, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China,*Correspondence: Wenxing Liang,
| | - Jingtao Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China,Jingtao Li,
| |
Collapse
|
9
|
Zhu H, Zhang Y, Li W, Huang N. A Comprehensive Survey of Prospective Structure-Based Virtual Screening for Early Drug Discovery in the Past Fifteen Years. Int J Mol Sci 2022; 23:15961. [PMID: 36555602 PMCID: PMC9781938 DOI: 10.3390/ijms232415961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Structure-based virtual screening (SBVS), also known as molecular docking, has been increasingly applied to discover small-molecule ligands based on the protein structures in the early stage of drug discovery. In this review, we comprehensively surveyed the prospective applications of molecular docking judged by solid experimental validations in the literature over the past fifteen years. Herein, we systematically analyzed the novelty of the targets and the docking hits, practical protocols of docking screening, and the following experimental validations. Among the 419 case studies we reviewed, most virtual screenings were carried out on widely studied targets, and only 22% were on less-explored new targets. Regarding docking software, GLIDE is the most popular one used in molecular docking, while the DOCK 3 series showed a strong capacity for large-scale virtual screening. Besides, the majority of identified hits are promising in structural novelty and one-quarter of the hits showed better potency than 1 μM, indicating that the primary advantage of SBVS is to discover new chemotypes rather than highly potent compounds. Furthermore, in most studies, only in vitro bioassays were carried out to validate the docking hits, which might limit the further characterization and development of the identified active compounds. Finally, several successful stories of SBVS with extensive experimental validations have been highlighted, which provide unique insights into future SBVS drug discovery campaigns.
Collapse
Affiliation(s)
- Hui Zhu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yulin Zhang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Wei Li
- RPXDs (Suzhou) Co., Ltd., Suzhou 215028, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
10
|
Zhang X, Wang H, Li Z, Shu Y, Gan S, Zhang X, Shao H, Wang C. Chemodivergent Synthesis of Aza-Heterocycles with a Quarternary Carbon Center via [4 + 1] Annulation between Azoalkenes and α-Bromo Carbonyl Compounds. ACS OMEGA 2022; 7:40963-40972. [PMID: 36406503 PMCID: PMC9670695 DOI: 10.1021/acsomega.2c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
An efficient [4 + 1] annulation reaction between in situ generated azoalkene intermediates and α-bromocarbonyls has been established. A series of skeletally diverse aza-heterocycles with a functionalized quaternary center were obtained in up to 89% yield under mild conditions.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haibo Wang
- Zhejiang
Hongyuan Pharmaceutical Co., Ltd., Chem & APIs, Industrial Zone, Linhai, Taizhou 310001, Zhejiang, P.R. China
| | - Ziwei Li
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| | - Yan Shu
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xuefang Zhang
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 100045, P.R. China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| |
Collapse
|
11
|
Moghimi S, Shafiei M, Foroumadi A. Drug design strategies for the treatment azole-resistant candidiasis. Expert Opin Drug Discov 2022; 17:879-895. [PMID: 35793245 DOI: 10.1080/17460441.2022.2098949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the availability of novel antifungals and therapeutic strategies, the rate of global mortality linked to invasive fungal diseases from fungal infection remains high. Candida albicans account for the most invasive mycosis produced by yeast. Thus, the current arsenal of medicinal chemists is focused on finding new effective agents with lower toxicity and broad-spectrum activity. In this review article, recent efforts to find effective agents against azole-resistant candidiasis, a common fungal infection, are covered. AREAS COVERED Herein, the authors outlined all azole-based compounds, dual target, and new scaffolds (non-azole-based compounds) which were effective against azole-resistant candidiasis. In addition, the mechanism of action and SAR studies were also discussed, if the data were available. EXPERT OPINION The current status of fungal infections and the drawbacks of existing drugs have encouraged scientists to find novel scaffolds based on different methods like virtual screening and fragment-based drug discovery. Machine learning and in-silico methods have found their role in this field and experts are hopeful to find novel scaffolds/compounds by using these methods.
Collapse
Affiliation(s)
- Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shafiei
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Inácio MC, Paz TA, Wijeratne EMK, Gunaherath GMKB, Guido RVC, Gunatilaka AAL. Antimicrobial activity of some celastroloids and their derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
14
|
Indolin-2-one derivatives as selective Aurora B kinase inhibitors targeting breast cancer. Bioorg Chem 2021; 117:105451. [PMID: 34736137 DOI: 10.1016/j.bioorg.2021.105451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Aurora B is a pivotal cell cycle regulator where errors in its function results in polyploidy, genetic instability, and tumorigenesis. It is overexpressed in many cancers, consequently, targeting Aurora B with small molecule inhibitors constitutes a promising approach for anticancer therapy. Guided by structure-based design and molecular hybridization approach we developed a series of fifteen indolin-2-one derivatives based on a previously reported indolin-2-one-based multikinase inhibitor (1). Seven derivatives, 5g, 6a, 6c-e, 7, and 8a showed preferential antiproliferative activity in NCI-60 cell line screening and out of these, carbamate 6e and cyclopropylurea 8a derivatives showed optimum activity against Aurora B (IC50 = 16.2 and 10.5 nM respectively) and MDA-MB-468 cells (IC50 = 32.6 ± 9.9 and 29.1 ± 7.3 nM respectively). Furthermore, 6e and 8a impaired the clonogenic potential of MDA-MB-468 cells. Mechanistic investigations indicated that 6e and 8a induced G2/M cell cycle arrest, apoptosis, and necrosis of MDA-MB-468 cells and western blot analysis of 8a effect on MDA-MB-468 cells revealed 8a's ability to reduce Aurora B and its downstream target, Histone H3 phosphorylation. 6e and 8a displayed better safety profiles than multikinase inhibitors such as sunitinib, showing no cytotoxic effects on normal rat cardiomyoblasts and murine hepatocytes. Finally, 8a demonstrated a more selective profile than 1 when screened against ten related kinases. Based on these findings, 8a represents a promising candidate for further development to target breast cancer via Aurora B selective inhibition.
Collapse
|
15
|
Dostál J, Brynda J, Vaňková L, Zia SR, Pichová I, Heidingsfeld O, Lepšík M. Structural determinants for subnanomolar inhibition of the secreted aspartic protease Sapp1p from Candida parapsilosis. J Enzyme Inhib Med Chem 2021; 36:914-921. [PMID: 33843395 PMCID: PMC8043539 DOI: 10.1080/14756366.2021.1906664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.
Collapse
Affiliation(s)
- Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Vaňková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Syeda Rehana Zia
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Heidingsfeld
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Kmeck A, Tancer RJ, Ventura CR, Wiedman GR. Synergies with and Resistance to Membrane-Active Peptides. Antibiotics (Basel) 2020; 9:antibiotics9090620. [PMID: 32961656 PMCID: PMC7559582 DOI: 10.3390/antibiotics9090620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-active peptides (MAPs) have long been thought of as the key to defeating antimicrobial-resistant microorganisms. Such peptides, however, may not be sufficient alone. In this review, we seek to highlight some of the common pathways for resistance, as well as some avenues for potential synergy. This discussion takes place considering resistance, and/or synergy in the extracellular space, at the membrane, and during interaction, and/or removal. Overall, this review shows that researchers require improved definitions of resistance and a more thorough understanding of MAP-resistance mechanisms. The solution to combating resistance may ultimately come from an understanding of how to harness the power of synergistic drug combinations.
Collapse
|