1
|
Chang CWT, Poudyal N, Verdugo DA, Peña F, Stehberg J, Retamal MA. KI04 an Aminoglycosides-Derived Molecule Acts as an Inhibitor of Human Connexin46 Hemichannels Expressed in HeLa Cells. Biomolecules 2023; 13:411. [PMID: 36979346 PMCID: PMC10046693 DOI: 10.3390/biom13030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Connexins (Cxs) are proteins that help cells to communicate with the extracellular media and with the cytoplasm of neighboring cells. Despite their importance in several human physiological and pathological conditions, their pharmacology is very poor. In the last decade, some molecules derived from aminoglycosides have been developed as inhibitors of Cxs hemichannels. However, these studies have been performed in E. coli, which is a very simple model. Therefore, our main goal is to test whether these molecules have similar effects in mammalian cells. METHODS We transfected HeLa cells with the human Cx46tGFP and characterized the effect of a kanamycin-derived molecule (KI04) on Cx46 hemichannel activity by time-lapse recordings, changes in phosphorylation by Western blot, localization by epifluorescence, and possible binding sites by molecular dynamics (MD). RESULTS We observed that kanamycin and KI04 were the most potent inhibitors of Cx46 hemichannels among several aminoglycosides, presenting an IC50 close to 10 μM. The inhibitory effect was not associated with changes in Cx46 electrophoretic mobility or its intracellular localization. Interestingly, 5 mM DTT did not reverse KI04 inhibition, but the KI04 effect completely disappeared after washing out KI04 from the recording media. MD analysis revealed two putative binding sites of KI04 in the Cx46 hemichannel. RESULTS These results demonstrate that KI04 could be used as a Cx46 inhibitor and could help to develop future selective Cx46 inhibitors.
Collapse
Affiliation(s)
- Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Daniel A. Verdugo
- Laboratorio de Neurobiología, Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andres Bello, Santiago 7780272, Chile
| | - Francisca Peña
- Laboratorio de Neurobiología, Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andres Bello, Santiago 7780272, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andres Bello, Santiago 7780272, Chile
| | - Mauricio A. Retamal
- Center for Membrane Protein Research, Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610496, Chile
| |
Collapse
|
2
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|
3
|
Takemoto JY, Altenberg GA, Poudyal N, Subedi YP, Chang CWT. Amphiphilic aminoglycosides: Modifications that revive old natural product antibiotics. Front Microbiol 2022; 13:1000199. [PMID: 36212866 PMCID: PMC9537547 DOI: 10.3389/fmicb.2022.1000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Widely-used Streptomyces-derived antibacterial aminoglycosides have encountered challenges because of antibiotic resistance and toxicity. Today, they are largely relegated to medicinal topical applications. However, chemical modification to amphiphilic aminoglycosides can revive their efficacy against bacterial pathogens and expand their targets to other pathogenic microbes and disorders associated with hyperactive connexin hemichannels. For example, amphiphilic versions of neomycin and neamine are not subject to resistance and have expanded antibacterial spectra, and amphiphilic kanamycins are effective antifungals and have promising therapeutic uses as connexin hemichannel inhibitors. With further research and discoveries aimed at improved formulations and delivery, amphiphilic aminoglycosides may achieve new horizons in pharmacopeia and agriculture for Streptomyces aminoglycosides beyond just serving as topical antibacterials.
Collapse
Affiliation(s)
- Jon Y. Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Yagya P. Subedi
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
- *Correspondence: Cheng-Wei T. Chang,
| |
Collapse
|
4
|
Retamal MA, Fernandez-Olivares A, Stehberg J. Over-activated hemichannels: A possible therapeutic target for human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166232. [PMID: 34363932 DOI: 10.1016/j.bbadis.2021.166232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
In our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Santiago, Chile; Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Santiago, Chile.
| | | | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
5
|
Van Campenhout R, Gomes AR, De Groof TW, Muyldermans S, Devoogdt N, Vinken M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int J Mol Sci 2021; 22:ijms22073503. [PMID: 33800706 PMCID: PMC8036530 DOI: 10.3390/ijms22073503] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gap junctions and connexin hemichannels mediate intercellular and extracellular communication, respectively. While gap junctions are seen as the “good guys” by controlling homeostasis, connexin hemichannels are considered as the “bad guys”, as their activation is associated with the onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved in the activation of connexin hemichannels during pathology.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
| | - Ana Rita Gomes
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
| | - Timo W.M. De Groof
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (T.W.M.D.G.); (N.D.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Nick Devoogdt
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (T.W.M.D.G.); (N.D.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
- Correspondence: ; Tel.: +32-2-4774587
| |
Collapse
|
6
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
7
|
Advances in the development of connexin hemichannel inhibitors selective toward Cx43. Future Med Chem 2021; 13:379-392. [PMID: 33399487 DOI: 10.4155/fmc-2020-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gap-junction channels formed by two connexin hemichannels play diverse and pivotal roles in intercellular communication and regulation. Normally hemichannels at the plasma membrane participate in autocrine and paracrine signaling, but abnormal increase in their activity can lead or contribute to various diseases. Selective inhibitors toward connexin hemichannels are of great interest. Among more than 20 identified isoforms of connexins, connexin 43 (Cx43) attracts the most interest due to its prevalence and link to cell damage in many disorders or diseases. Traditional antibacterial kanamycin decorated with hydrophobic groups yields amphiphilic kanamycins that show low cytotoxicity and prominent inhibitory effect against Cx43. This review focuses on the development of amphiphilic kanamycins as connexin hemichannel inhibitors and their future perspective.
Collapse
|