1
|
Xia YF, Lu RB, Sun WJ, Lin ST, Zhang JR, Jiang CJ. The crystal structure of 3,4-dihydroxybenzoic acid – 3-[7-{[2-(3,4-difluorophenyl)cyclopropyl]amino}-5-(propylsulfanyl)-3 H-[1,2,3] triazolo[4,5- d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2-diol – water (1/1/1), C 30H 36F 2N 6O 9S. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2022-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
C30H36F2N6O9S, orthorhombic, P212121 (no. 19), a = 5.2364(8) Å, b = 10.0250(14) Å, c = 59.689(9) Å, V = 3133.4(8) Å3, Z = 4, Rgt
(F) = 0.0384, wRref
(F
2) = 0.0969, T = 170 K.
Collapse
Affiliation(s)
- Ying-Fan Xia
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Liuhe Road 318# , Hangzhou , China
| | - Rong-Bin Lu
- Zhejiang Lepu Pharmaceutical Co., Ltd. , Binhai Road 29# , Taizhou , China
| | - Wei-Jie Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Liuhe Road 318# , Hangzhou , China
| | - Shu-Ting Lin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Liuhe Road 318# , Hangzhou , China
| | - Jia-Rong Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Liuhe Road 318# , Hangzhou , China
| | - Cheng-Jun Jiang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Liuhe Road 318# , Hangzhou , China
| |
Collapse
|
2
|
Liu H, Liu Y, Zhou T, Zhou P, Li J, Deng A. Ultrasensitive and Specific Detection of Anticancer Drug 5-Fluorouracil in Blood Samples by a Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunochromatographic Assay. Molecules 2022; 27:4019. [PMID: 35807264 PMCID: PMC9268288 DOI: 10.3390/molecules27134019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
5-Fluorouracil (5-FU) is an effective anticancer drug widely used in the world. To improve therapy efficiency and reduce side effects, it is very important to frequently detect the concentration of 5-FU in blood samples of patients. In this work, a new type of lateral flow immunochromatographic assay (LFIA) based on surface-enhanced Raman scattering (SERS) for ultrasensitive and specific detection of 5-FU in blood samples was developed. Au@Ag/Au nanoparticles (NPs) employing Au particles as the core and Ag/Au alloy as the shell were synthesized, characterized and used as the substrate in SERS-LFIA due to their high SERS enhancement and biocompatibility. The immunoprobe was made in the form of AuMBA@Ag/Au-Ab in which mercaptobenzoic acid (MBA, a common Raman active reporter) was embedded in the core-shell layer and the monoclonal antibody (mAb) against 5-FU was immobilized on the surface. The performance of SERS-LFIA was similar to that in colloidal gold based-LFIA, and the entire assay time was within 20 min. According to the color intensity on the testing (T) lines of LFIA strips visualized by eyes, the contents of 5-FU in the samples could be qualitatively or semi-quantitatively identified. Furthermore, by measuring the characteristic Raman intensities of MBA on T lines, quantitative detection of 5-FU in the samples were achieved. The IC50 and limit of detection (LOD) of the LFIA for 5-FU were found to be 20.9 pg mL-1 and 4.4 pg mL-1, respectively. There was no cross-reactivity (CR) of the LFIA with nine relative compounds, and the CR with cytosine, tegafur and carmofur were less than 4.5%. The recoveries of 5-FU from spiked blood samples were in the range of 78.6~86.4% with the relative standard deviation (RSD) of 2.69~4.42%. Five blood samples containing 5-FU collected from the Cancer Hospital were measured by SERS-LFIA, and the results were confirmed by LC-MS/MS. It was proven that the proposed method was able to simply and rapidly detect 5-FU in blood samples with high sensitivity, specificity, accuracy and precision.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (H.L.); (Y.L.); (T.Z.); (P.Z.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (H.L.); (Y.L.); (T.Z.); (P.Z.)
| |
Collapse
|
3
|
Qin Z, Ma Y, Li F. Construction of a Pyrimidine Framework through [3 + 2 + 1] Annulation of Amidines, Ketones, and N, N-Dimethylaminoethanol as One Carbon Donor. J Org Chem 2021; 86:13734-13743. [PMID: 34541847 DOI: 10.1021/acs.joc.1c01847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient, facile, and eco-friendly synthesis of pyrimidine derivatives has been developed. It involves a [3 + 2 + 1] three-component annulation of amidines, ketones, and one carbon source. N,N-Dimethylaminoethanol is oxidized through C(sp3)-H activation to provide the carbon donor. One C-C and two C-N bonds are formed during the oxidative annulation process. The reaction shows good tolerance to many important functional groups in air, making this methodology a highly versatile alternative, and significant improvement to the existing methods for structuring a pyrimidine framework, especially 4-aliphatic pyrimidines.
Collapse
Affiliation(s)
- Zemin Qin
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Fanzhu Li
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|
4
|
Farouk O, Ibrahim MA, El-Gohary NM. Synthesis, chemical reactivity and biological evaluation of the novel 2-[(1-chloro-3-oxoprop-1-en-1-yl)amino]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1958231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Osama Farouk
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| | - Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| | - Nasser M. El-Gohary
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| |
Collapse
|
5
|
Fedotov VV, Ulomsky EN, Belskaya NP, Eltyshev AK, Savateev KV, Voinkov EK, Lyapustin DN, Rusinov VL. Benzimidazoazapurines: Design, Synthesis, and Photophysical Study. J Org Chem 2021; 86:8319-8332. [PMID: 34098716 DOI: 10.1021/acs.joc.1c00760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A highly efficient approach to a new class of polycyclic 8-azapurines, benzo[4,5]imidazo[1,2-a][1,2,3]triazolo[4,5-e]pyrimidines (BITPs), with good photophysical characteristics is proposed. The approach comprises condensation of aminobenzimidazoles with 3-oxo-2-phenylazopropionitrile to form 3-(arylazo)benzo[4,5]imidazo[1,2-a]pyrimidine-4-amines, which undergo oxidative cyclization by the catalytic action of copper(II) acetate, resulting in BITPs with 73-84% yield. Spectral investigations demonstrated the fluorescent properties of BITPs, exhibiting good quantum yields (up to 60%) with maxima absorption at 379-399 and emission at 471-505 nm.
Collapse
Affiliation(s)
- Victor V Fedotov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Evgeny N Ulomsky
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Nataliya P Belskaya
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Alexander K Eltyshev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Konstantin V Savateev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Egor K Voinkov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Daniil N Lyapustin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Vladimir L Rusinov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| |
Collapse
|