1
|
Mahmoud E, Abdelhamid D, Mohammed AF, Almarhoon ZM, Bräse S, Youssif BGM, Hayallah AM, Abdel-Aziz M. Design, Synthesis, and Antiproliferative Activity of Novel Indole/1,2,4-Triazole Hybrids as Tubulin Polymerization Inhibitors. Pharmaceuticals (Basel) 2025; 18:275. [PMID: 40006087 PMCID: PMC11859928 DOI: 10.3390/ph18020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: New indole/1,2,4-triazole hybrids were synthesized and tested for antiproliferative activity against the NCI 60 cell line as tubulin polymerization inhibitors. Methods: All final compounds, 6a-j and 7a-j were evaluated at a single concentration of 10 µM against a panel of sixty cancer cell lines. Results: Compounds 7a-j, featuring the NO-releasing oxime moiety, exhibited superior anticancer activity to their precursor ketones 6a-j across all tested cancer cell lines. Compounds 6h, 7h, 7i, and 7j were chosen for five-dose evaluations against a comprehensive array of 60 human tumor cell lines. The data showed that all tested compounds had significant anticancer activity throughout the nine tumor subpanels studied, with selectivity ratios ranging from 0.52 to 2.29 at the GI50 level. Compounds 7h and 7j showed substantial anticancer effectiveness against most cell lines across nine subpanels, with GI50 values ranging from 1.85 to 5.76 µM and 2.45 to 5.23 µM. Compounds 6h, 7h, 7i, and 7j were assessed for their inhibitory effects on tubulin polymerization. Conclusions: The results showed that compound 7i, an oxime-based derivative, was the most effective at blocking tubulin, with an IC50 value of 3.03 ± 0.11 µM. This was compared to the standard drug CA-4, which had an IC50 value of 8.33 ± 0.29 µM. Additionally, cell cycle analysis and apoptosis assays were performed for compound 7i. Molecular computational investigations have been performed to examine the binding mode of the most effective compounds to the target enzyme.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 2460271, Egypt;
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 2431436, Egypt; (D.A.); (M.A.-A.)
| | - Anber F. Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.F.M.); (B.G.M.Y.)
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.F.M.); (B.G.M.Y.)
| | - Alaa M. Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.F.M.); (B.G.M.Y.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut 71515, Egypt
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 2431436, Egypt; (D.A.); (M.A.-A.)
| |
Collapse
|
2
|
Ezelarab HAA, Ali TFS, Abbas SH, Sayed AM, Beshr EAM, Hassan HA. New antiproliferative 3-substituted oxindoles inhibiting EGFR/VEGFR-2 and tubulin polymerization. Mol Divers 2024; 28:563-580. [PMID: 36790582 PMCID: PMC11070402 DOI: 10.1007/s11030-023-10603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| |
Collapse
|
3
|
An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med Chem 2023; 15:73-95. [PMID: 36756851 DOI: 10.4155/fmc-2022-0212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Microtubules, formed by α- and β-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.
Collapse
|
4
|
Deng B, Sun Z, Wang Y, Mai R, Yang Z, Ren Y, Liu J, Huang J, Ma Z, Chen T, Zeng C, Chen J. Design, synthesis, and bioevaluation of imidazo [1,2-a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities. Bioorg Med Chem 2022; 76:117098. [PMID: 36455508 DOI: 10.1016/j.bmc.2022.117098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Through structural optimization and ring fusion strategy, we designed a series of novel imidazo[1,2-a]pyrazine derivatives as potential tubulin inhibitors. These compounds displayed potent anti-proliferative activities (micromolar to nanomolar) against a panel of cancer cell lines (including HepG-2, HCT-116, A549 and MDA-MB-231 cells). Among them, compound TB-25 exhibited the strongest inhibitory effects against HCT-116 cells with an IC50 of 23 nM. Mechanism studies revealed that TB-25 could effectively inhibit tubulin polymerization in vitro, and destroy the dynamic equilibrium of microtubules in HCT-116 cells. In addition, TB-25 dose-dependently induced G2/M phase cell cycle arrest and apoptosis in HCT-116 cells. Furthermore, TB-25 suppressed HCT-116 cell migration in a concentration-dependent manner. Finally, molecular docking showed that TB-25 fitted well in the colchicine binding site of tubulin and overlapped nicely with CA-4. Collectively, these results suggest that TB-25 represents a promising tubulin inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Hauguel C, Ducellier S, Provot O, Ibrahim N, Lamaa D, Balcerowiak C, Letribot B, Nascimento M, Blanchard V, Askenatzis L, Levaique H, Bignon J, Baschieri F, Bauvais C, Bollot G, Renko D, Deroussent A, Prost B, Laisne MC, Michallet S, Lafanechère L, Papot S, Montagnac G, Tran C, Alami M, Apcher S, Hamze A. Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors. Eur J Med Chem 2022; 240:114573. [DOI: 10.1016/j.ejmech.2022.114573] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
|
6
|
Essential Oils of Ocimum basilicum L. and Ocimum americanum L. from Djibouti: Chemical Composition, Antimicrobial and Cytotoxicity Evaluations. Processes (Basel) 2022. [DOI: 10.3390/pr10091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ocimum plants are of great interest to traditional medicine in the history of several civilizations, particularly in terms of chronic human diseases. Essential oils obtained from this genus have also been used as therapeutic agents. In this present work, two plants of the Ocimum species from Djibouti, Ocimum basilicum L. and Ocimum americanum L., were subjected to hydrodistillation to obtain their essential oils. Gas chromatography-mass spectrometry was performed to determine the chemical composition of both essential oils. Linalool (41.2%) and estragole (30.1%) are the major compounds among the 37 compounds that have been identified in the essential oil of Ocimum basilicum L. (EOOB), and carvotanacetol (38.4%) and estragole (27.5%) are the main compounds among the 42 compounds that have been identified in the essential oil of Ocimum americanum L. (EOOA). Morever, the cytotoxic activity of EOs was evaluated against 13 human cancer cell lines (K562, A549, HCT116, PC3, U87-MG, MIA-Paca2, HEK293, NCI-N87, RT4, U2OS, A2780, MRC -5 and JIMT-T1) using a luminescence spectrophotometric method; hence, the oils showed significant cytotoxic activities. The antibacterial activities of the oils were assayed on five Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Staphylococcus epidermidis and Corynebacterium sp.) and seven Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Shigella sonnei, Salmonella enterica sv. Typhimurium and Enterobacter cloacae) by agar disc diffusion methods. Both essential oils exhibited moderate activities against Streptococcus agalactiae, and thus each has an activity against Pseudomonas aeruginosa for EOOB and against Enterobacter cloacae for EOOA, while the others are negative. The findings of this work showed the promising anticancer effects of both oils against total cell lines with a potential for use as natural alternatives to synthetic drugs; however, there was only an antibacterial effect against Streptococcus agalactiae.
Collapse
|
7
|
Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018‒2021). Acta Pharm Sin B 2022; 12:3006-3027. [PMID: 35865090 PMCID: PMC9293743 DOI: 10.1016/j.apsb.2022.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer, which is the uncontrolled growth of cells, is the second leading cause of death after heart disease. Targeting drugs, especially to specific genes and proteins involved in growth and survival of cancer cells, is the prime need of research world-wide. Indole moiety, which is a combination of aromatic-heterocyclic compounds, is a constructive scaffold for the development of novel leads. Owing to its bioavailability, high unique chemical properties and significant pharmacological behaviours, indole is considered as the most inquisitive scaffold for anticancer drug research. This is illustrated by the fact that the U.S. Food and Drug Administration (FDA) has recently approved several indole-based anticancer agents such as panobinostat, alectinib, sunitinib, osimertinib, anlotinib and nintedanib for clinical use. Furthermore, hundreds of studies on the synthesis and activity of the indole ring have been published in the last three years. Taking into account the facts stated above, we have presented the most recent advances in medicinal chemistry of indole derivatives, encompassing hot articles published between 2018 and 2021 in anticancer drug research. The recent advances made towards the synthesis of promising indole-based anticancer compounds that may act via various targets such as topoisomerase, tubulin, apoptosis, aromatase, kinases, etc., have been discussed. This review also summarizes some of the recent efficient green chemical synthesis for indole rings using various catalysts for the period during 2018–2021. The review also covers the synthesis, structure‒activity relationship, and mechanism by which these leads have demonstrated improved and promising anticancer activity. Indole molecules under clinical and preclinical stages are classified into groups based on their cancer targets and presented in tabular form, along with their mechanism of action. The goal of this review article is to point the way for medicinal chemists to design and develop effective indole-based anticancer agents.
Collapse
|
8
|
Kaur M, Kumar R. A Minireview on Cadogan cyclization reactions leading to diverse azaheterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manpreet Kaur
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda 151401 Bathinda INDIA
| | - Raj Kumar
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda, Bathinda 151401 Bathinda INDIA
| |
Collapse
|
9
|
Yan J, Xu Y, Jin X, Zhang Q, Ouyang F, Han L, Zhan M, Li X, Liang B, Huang X. Structure modification and biological evaluation of indole-chalcone derivatives as anti-tumor agents through dual targeting tubulin and TrxR. Eur J Med Chem 2022; 227:113897. [PMID: 34649064 DOI: 10.1016/j.ejmech.2021.113897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Microtubule target agents (MTAs) are widely-used clinical anti-cancer drugs for decades, but the acquired drug resistance severely restricted their application. Thioredoxin reductases (TrxR) was reported to be overexpressed in most tumors and closely related to high risk of cancer recurrence and drug resistance, making it a potential target for anticancer drug discovery. Multi-target-directed ligands (MTDLs) by a single molecule provide a logical and alternative approach to drug combinations. In this work, based on the structure-activity relationships obtained in our previous study, some structure modifications were performed. On one hand, the retained skeleton structure of MTAs endowed its tubulin polymerization inhibition activity, on the other hand, the selenium-containing structure and α,β-unsaturated ketone moiety endowed the TrxR inhibition activity. As results, the newly obtained compounds exhibited superior anti-proliferative activities towards various human cancer cells and drug-resistance cells, and displayed high selectivity towards various human normal cells. The mechanism study revealed that the dual effect of cell cycle arrest triggered by targeting tubulin and the abnormal accumulation of ROS caused by TrxR inhibition eventually lead to cell apoptosis. Notably, compared with the MTA agents CA-4P, and the TrxR inhibitor Ethaselen, the optimized compound 14c, which served as dual-targeting inhibitor of tubulin and TrxR, exerted greatly improved in vivo anti-tumor activity. In summary, 14c deserved further consideration for cancer therapy.
Collapse
Affiliation(s)
- Jun Yan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yuzhu Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China
| | - Xing Jin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China
| | - Qiaoxuan Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Feng Ouyang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Min Zhan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Baoxia Liang
- The School of Food and Biological Engineering, Guangdong Polytechnic of Science and Trade, Guangzhou, 510430, China.
| | - Xianzhang Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Laisne MC, Michallet S, Lafanechère L. Characterization of Microtubule Destabilizing Drugs: A Quantitative Cell-Based Assay That Bridges the Gap between Tubulin Based- and Cytotoxicity Assays. Cancers (Basel) 2021; 13:cancers13205226. [PMID: 34680374 PMCID: PMC8533752 DOI: 10.3390/cancers13205226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The characterization of new microtubule depolymerizing agents relies mainly on purified tubulin assays in vitro and on cytotoxicity tests. However, the relationship between the in vitro effects of drugs and their effect on cell viability may not be direct. Here, we have systematically compared the effect of four reference drugs on tubulin polymerization in vitro and in cells, using a recently-developed quantitative assay of the cellular microtubule content. By comparing these results with cell viability assays, we found that this new cellular microtubule content test better predicts cellular drug toxicity than the in vitro tubulin polymerization assay. This test can thus be easily implemented in the process of discovery and characterization of novel microtubule poisons. Abstract (1) Background: Microtubule depolymerizing agents (MDAs) are commonly used for cancer treatment. However, the therapeutic use of such microtubule inhibitors is limited by their toxicity and the emergence of resistance. Thus, there is still a sustained effort to develop new MDAs. During the characterization of such agents, mainly through in vitro analyses using purified tubulin and cytotoxicity assays, quantitative comparisons are mandatory. The relationship between the effect of the drugs on purified tubulin and on cell viability are not always direct. (2) Methods: We have recently developed a cell-based assay that quantifies the cellular microtubule content. In this study, we have conducted a systematic comparative analysis of the effect of four well-characterized MDAs on the kinetics of in vitro tubulin assembly, on the cellular microtubule content (using our recently developed assay) and on cell viability. (3) Conclusions: These assays gave complementary results. Additionally, we found that the drugs’ effect on in vitro tubulin polymerization is not completely predictive of their relative cytotoxicity. Their effect on the cellular microtubule content, however, is closely related to their effect on cell viability. In conclusion, the assay we have recently developed can bridge the gap between in vitro tubulin assays and cell viability assays.
Collapse
|
11
|
Guo Y, Wang H, Gerberich JL, Odutola SO, Charlton-Sevcik AK, Li M, Tanpure RP, Tidmore JK, Trawick ML, Pinney KG, Mason RP, Liu L. Imaging-Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265 as a Potential Therapeutic Agent for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13194769. [PMID: 34638255 PMCID: PMC8507561 DOI: 10.3390/cancers13194769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Vascular-disrupting agents promise significant therapeutic efficacy against solid tumors by selectively damaging tumor-associated vasculature. Dynamic BLI and oxygen-enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following administration of KGP265. BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h indicating vascular disruption, which continued over 24 h. Twice-weekly doses of KGP265 caused a significant growth delay in MDA-MB-231 human breast tumor xenografts and 4T1 syngeneic breast tumors growing orthotopically in mice. Abstract The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.
Collapse
Affiliation(s)
- Yihang Guo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha 410013, China
| | - Honghong Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Amanda K. Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Maoping Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| |
Collapse
|
12
|
El Abbouchi A, El Brahmi N, Hiebel MA, Bignon J, Guillaumet G, Suzenet F, El Kazzouli S. Synthesis and evaluation of a novel class of ethacrynic acid derivatives containing triazoles as potent anticancer agents. Bioorg Chem 2021; 115:105293. [PMID: 34426162 DOI: 10.1016/j.bioorg.2021.105293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
For unmet clinical needs, a novel class of ethacrynic acid (EA) derivatives containing triazole moieties (3a-i and 8) were designed, synthesized and evaluated as new anticancer agents. The in vitro anti-proliferative activities were assessed first on HL60 cell line and in a second stage, the two selected compounds 3a and 3c were tested on a panel of human cancer cell lines (A549, MCF7, PC3, U87-MG, SKOV3 and HCT116) and on a normal cell line (MCR5). Compound3c exhibited very good antitumor activities with IC50 values of 20.2, 56.5 and 76.8 nM against A549, PC3 and U87-MG cell lines respectively, which is 2.8- and 1.3-fold more active than doxorubicin on A549 and U87-MG cancer cells, respectively. In addition, compound 3c displays a very good safety index (SI) of 82 fold for A549. Compound 3a showed also good IC50 values of 50 nM on both A549 and PC3 cells and lower selectivity compared to 3c for A549 and PC3 vs. MCR5 with SI of 33 and 18 fold, respectively. The measurement of mitochondrial membrane potential on HCT116 cells after treatments by either 3a or 3c showed that both compounds induced mitochondrial dysfunctions causing thus caspase-induced apoptosis.
Collapse
Affiliation(s)
- Abdelmoula El Abbouchi
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France
| | - Nabil El Brahmi
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco
| | - Marie-Aude Hiebel
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gérald Guillaumet
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France.
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France.
| | - Saïd El Kazzouli
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco.
| |
Collapse
|
13
|
Wu CJ, Wu JQ, Hu Y, Pu S, Lin Y, Zeng Z, Hu J, Chen WH. Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors. Eur J Med Chem 2021; 223:113629. [PMID: 34175541 DOI: 10.1016/j.ejmech.2021.113629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
A series of indole-based [1,2,4]triazolo [4,3-a]pyridine derivatives was designed and synthesized as novel microtubulin polymerization inhibitors by using a conformational restriction strategy. These compounds exhibited moderate to potent anti-proliferative activities against a panel of cancer cell lines (HeLa, A549, MCF-7 and HCT116). Among them, compound 12d featuring a N-methyl-5-indolyl substituent at the C-6 position of the [1,2,4]triazolo [4,3-a]pyridine core exhibited the highest antiproliferative activity with the IC50 values ranging from 15 to 69 nM, and remarkable inhibitory effect on tubulin polymerization with an IC50 value of 1.64 μM. Mechanistic studies revealed that compound 12d induced cellular apoptosis and cell cycle arrest at the G2/M phase in a dose-dependent fashion. Moreover, compound 12d significantly suppressed wound closure and disturbed microtubule networks.
Collapse
Affiliation(s)
- Cheng-Jun Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yuying Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Zimai Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
14
|
Yang F, Jian XE, Chen L, Ma YF, Liu YX, You WW, Zhao PL. Discovery of new indole-based 1,2,4-triazole derivatives as potent tubulin polymerization inhibitors with anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj03892c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thirty-six novel indole-based 1,2,4-triazole derivatives were designed and synthesized through the molecular hybrid strategy.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Feng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|