1
|
Schaaf RE, Quirke JCK, Ghavami M, Tonogai EJ, Lee HY, Barlock SL, Trzupek TR, Abo KR, Rees MG, Ronan MM, Roth JA, Hergenrother PJ. Identification of a Selective Anticancer Agent from a Collection of Complex-And-Diverse Compounds Synthesized from Stevioside. J Am Chem Soc 2025; 147:10647-10661. [PMID: 40070033 DOI: 10.1021/jacs.5c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Compounds constructed by distorting the ring systems of natural products serve as a ready source of complex and diverse molecules, useful for a variety of applications. Herein is presented the use of the diterpenoids steviol and isosteviol as starting points for the construction of >50 new compounds through this complexity-to-diversity approach, featuring novel ring system distortions and a noteworthy thallium(III) nitrate (TTN)-mediated ring fusion. Evaluation of this collection identified SteviX4 as a potent and selective anticancer compound, inducing cell death at low nanomolar concentrations against some cancer cell lines in culture, compared to micromolar activity against others. SteviX4 induces ferroptotic cell death in susceptible cell lines, and target identification experiments reveal SteviX4 acts as an inhibitor of glutathione peroxidase 4 (GPX4), a critical protein that protects cancer cells against ferroptosis. In its induction of cell death, SteviX4 displays enhanced cell line selectivity relative to most known GPX4 inhibitors. SteviX4 was used to reveal dependency on GPX4 as a vulnerability of certain cancer cell lines, not tied to any one type of cancer, suggesting GPX4 inhibition as a cancer type-agnostic anticancer strategy. With its high fraction of sp3-hybridized carbons and considerable cell line selectivity and potency, SteviX4 is unique among GPX4 inhibitors, serving as an outstanding probe compound and basis for further translational development.
Collapse
Affiliation(s)
- Rachel E Schaaf
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan C K Quirke
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Maryam Ghavami
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emily J Tonogai
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyang Yeon Lee
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samantha L Barlock
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas R Trzupek
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle R Abo
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paul J Hergenrother
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Peng JQ, Xiao YQ, Long J, Zhang SS, Zhu YY, Gu SX. Design, synthesis, and biological evaluation of dithiocarbamate derivatives as SARS-CoV-2 M pro inhibitors. Bioorg Med Chem Lett 2024; 114:130011. [PMID: 39486486 DOI: 10.1016/j.bmcl.2024.130011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
SARS-CoV-2 continues to mutate, spread, and impact public health and daily life. The main protease (Mpro) is essential for the replication and maturation of SARS-CoV-2, making it an ideal target for anti-coronaviral drug discovery and development due to its high conservation and lack of homologous proteases in humans. Herein, we designed and synthesized a series of dithiocarbamate derivatives as potent SARS-CoV-2 Mpro inhibitors. Notably, compound L2 exhibited an IC50 value of 9.1 ± 2.0 nM against SARS-CoV-2 Mpro, underscoring its potential as a promising candidate for anti-coronaviral therapy and justifying further research and development.
Collapse
Affiliation(s)
- Jin-Qi Peng
- School of Chemical Engineering and Pharmacy, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ya-Qi Xiao
- School of Chemical Engineering and Pharmacy, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
3
|
Qi XX, Wang PP, Cui LT, Jin M, Zhao LX, Li G. Synthesis, characterization and in vitro antiproliferative effects of isosteviol derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:812-823. [PMID: 38477295 DOI: 10.1080/10286020.2024.2324082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/01/2023] [Indexed: 03/14/2024]
Abstract
Nineteen isosteviol derivatives were designed and synthesized by C-16, C-19 and D-ring modifications of isosteviol. These compounds were screened for their cytotoxic activities against Hela and A549 cells in vitro. Among them, the inhibitory effect of compounds 3b and 16 on Hela cells was comparable to that of the positive control gefitinib, and the compounds 3b (IC50=7.84 ± 0.84 μM) and 7a (IC50=6.89 ± 0.33 μM) exhibited significant cytotoxicity superior to gefitinib (IC50=11.02 ± 3.27 μM) against A549 cells.
Collapse
Affiliation(s)
- Xin-Xin Qi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Pan-Pan Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Lan-Tian Cui
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Mei Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Long-Xuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
4
|
Zhang J, Zhu W, Ma Y, Huang X, Su W, Sun Y, Liu Q, Ma T, Ma L, Sun J, Fan S, Wang X, Lin S, Wang W, Han C. Triphenylphosphonium-linked derivative of hecogenin with enhanced antiproliferative activity: Design, synthesis, and biological evaluation. Bioorg Chem 2024; 145:107210. [PMID: 38364551 DOI: 10.1016/j.bioorg.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Hecogenin (HCG), a steroidal sapogenin, possesses good antitumor properties. However, the application of HCG for cancer treatment has been hindered primarily by its moderate potency. In this study, we incorporated triphenylphosphonium cation (TPP+) at the C-3 and C-12 positions through different lengths of alkyl chains to target mitochondria and enhance the efficacy and selectivity of the parent compound. Cytotoxicity screening revealed that most of the target compounds exhibited potent antiproliferative activity against five human cancer cell lines (MKN45, A549, HCT-116, MCF-7, and HepG2). Structure-activity relationship studies indicated that the TPP+ group significantly enhanced the antiproliferative potency of HCG. Among these compounds, 3c demonstrated remarkable potency against MKN45 cells with an IC50 value of 0.48 μM, significantly more effective than its parent compound HCG (IC50 > 100 μM). Further investigations into the mechanism of action revealed that 3c induced apoptosis of MKN45 cells through the mitochondrial pathway. In a zebrafish xenograft model, 3c inhibited the proliferation of MKN45 cells. Overall, these results suggest that 3c, with potent antiproliferative activity, may serve as a valuable scaffold for developing new antitumor agents.
Collapse
Affiliation(s)
- Jinling Zhang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenquan Zhu
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yukun Ma
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoying Huang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenle Su
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Sun
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Qi Liu
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Tiancheng Ma
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Liwei Ma
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jia Sun
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Songjie Fan
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoli Wang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Song Lin
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenbao Wang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| | - Cuiyan Han
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
5
|
Yang Y, Zhao L, Wang T, Zheng X, Wu Y. Biological activity and structural modification of isosteviol over the past 15 years. Bioorg Chem 2024; 143:107074. [PMID: 38176378 DOI: 10.1016/j.bioorg.2023.107074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.
Collapse
Affiliation(s)
- Youfu Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lijun Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tongsheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Ya Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|
6
|
Heisig J, Heise NV, Hoenke S, Ströhl D, Csuk R. The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative. Molecules 2023; 28:4951. [PMID: 37446613 DOI: 10.3390/molecules28134951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Acid hydrolysis of stevioside resulted in a 63% yield of isosteviol (1), which served as a starting material for the preparation of numerous amides. These compounds were tested for cytotoxic activity, employing a panel of human tumor cell lines, and almost all amides were found to be non-cytotoxic. Only the combination of isosteviol, a (homo)-piperazinyl spacer and rhodamine B or rhodamine 101 unit proved to be particularly suitable. These spacered rhodamine conjugates exhibited cytotoxic activity in the sub-micromolar concentration range. In this regard, the homopiperazinyl-spacered derivatives were found to be better than those compounds with piperazinyl spacers, and rhodamine 101 conjugates were more cytotoxic than rhodamine B hybrids.
Collapse
Affiliation(s)
- Julia Heisig
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Niels V Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Dieter Ströhl
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Peng M, Wang Z, Sun X, Guo X, Wang H, Li R, Liu Q, Chen M, Chen X. Deep Learning-Based Label-Free Surface-Enhanced Raman Scattering Screening and Recognition of Small-Molecule Binding Sites in Proteins. Anal Chem 2022; 94:11483-11491. [PMID: 35968807 DOI: 10.1021/acs.analchem.2c01158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Identification of small-molecule binding sites in proteins is of great significance in analysis of protein function and drug design. Modified sites can be recognized via proteolytic cleavage followed by liquid chromatography-mass spectrometry (LC-MS); however, this has always been impeded by the complexity of peptide mixtures and the elaborate synthetic design for tags. Here, we demonstrate a novel technique for identifying protein binding sites using a deep learning-based label-free surface-enhanced Raman scattering (SERS) screening (DLSS) strategy. In DLSS, the deep learning model that was trained with large SERS signals could detect signal features of small molecules with high accuracy (>99%). Without any secondary tag, the small molecules are directly complexed with proteins. After proteolysis and LC, SERS signals of all LC fractions are collected and input into the model, whereby the fractions containing the small-molecule-modified peptides can be recognized by the model and sent to MS/MS to identify the binding site(s). By using an automated DLSS system, we successfully identified the modification sites of fomepizole in alcohol dehydrogenase, which is coordinated with zinc along with three peptides. We also showed that the DLSS strategy works for identification of amino-acid residues that covalently bond with ibrutinib in Bruton tyrosine kinase. These results suggest that the DLSS strategy, which provides high molecular recognition capability to LC-MS analysis, has potential in drug discovery, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Mei Peng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zi Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangwei Guo
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Haoyang Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.,School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Zhang P, Li Q, Chen Y, Peng N, Liu W, Wang X, Li Y. Induction of cellulase production in Trichoderma reesei by a glucose-sophorose mixture as an inducer prepared using stevioside. RSC Adv 2022; 12:17392-17400. [PMID: 35765440 PMCID: PMC9190947 DOI: 10.1039/d2ra01192a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Sophorose is currently the most effective inducer of cellulase production by Trichoderma reesei; however, the use of byproduct sophorose from the stevioside acid hydrolysis process has not been developed. In this study, stevioside was hydrolysed with different concentrations of HCl to obtain isosteviol and a mixture of glucose and sophorose (MGS). Isosteviol showed good inhibitory effects on the growth of Aspergillus niger, Saccharomyces cerevisiae and Escherichia coli after separation. At the same time, MGS, as a byproduct, was evaluated for cellulase production to determine the feasibility of this approach. MGS was compared with common soluble inducers, such as lactose, cellobiose, and a mixture of glucose and β-disaccharide (MGD), and induced higher cellulase production than the other inducers. The cellulase activity induced by MGS was 1.64- and 5.26-fold higher than that induced by lactose and cellobiose, respectively, and was not significantly different from that induced by MGD. The crude enzyme using MGS as an inducer with commercial β-glucosidase was further tested by hydrolyzing NaOH-pretreated corn stover with 5% solid loading, and 33.4 g L-1 glucose was released with a glucose yield of 96.04%. The strategy developed in this work will be beneficial for reducing inducer production cost through a simple stevia glycoside hydrolysis reaction and will contribute to studies aimed at improving cellulase production using soluble inducers for easier operation in industrial-scale cellulase production.
Collapse
Affiliation(s)
- Peng Zhang
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Qian Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Yudian Chen
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Nian Peng
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Wenshu Liu
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Xuemei Wang
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Yonghao Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| |
Collapse
|
9
|
Qiao G, Ji W, Sun Z, Wang X, Li P, Jia H, Duan L, Qi F. Isosteviol reduces the acute inflammatory response after burns by upregulating MMP9 in macrophages leading to M2 polarization. Int Immunopharmacol 2022; 106:108609. [PMID: 35176589 DOI: 10.1016/j.intimp.2022.108609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Isosteviol is a widely known sweetener isolated from the herb Stevia rebaudiana. It is well documented that isosteviol, a derivative of stevioside, has a variety of biological activities, including anti-inflammatory, anti-hypertensive, and cardioprotective effects and alleviation of ischaemia-reperfusion injury. However, the protective mechanism of isosteviol in burn injuryis still unclear. This work aimed to screen and identify the role of macrophage-related genes after burn injury through bioinformatic analysis and biological experiments and to detect the effect of isosteviol on burn inflammation. The results showed that two days after burn injury was considered the acute inflammatory response node, which was when the expression levels of CCL3, CCL4, MMP9, and CD86 in macrophages were significantly changed. Monitoring and regulating these sensitive indicators may help to evaluate the severity of burns and reduce the inflammatory impact of burns on the body. After treatment with isosteviol, during the acute inflammatory phase, the expression of MMP9 was increased, the polarization of macrophages towards the alternatively activated (M2) phenotype was increased, and IL-6 and TNF-α levels were significantly decreased. Our study provides evidence thatisosteviol can reduce inflammation after burn injury by promoting an increase in the M2-classically activated (M1) macrophage ratio and increasing the expression of MMP9 in burn wound tissue during acute inflammation.
Collapse
Affiliation(s)
- Gangjie Qiao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Zhaonan Sun
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Xiulan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Haowen Jia
- General Surgery Department, Tianjin Medical University General Hospital, Airport Hospital, 85 East Sixth Road, Dongli District, Tianjin 300300, China.
| | - Lingling Duan
- General Surgery Department, Tianjin Medical University General Hospital, Airport Hospital, 85 East Sixth Road, Dongli District, Tianjin 300300, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|