1
|
Wang T, Sun N, Ma Y, Zhang S. Recent Advances in the Development of Sigma Receptor (Radio)Ligands and Their Application in Tumors. ACS Pharmacol Transl Sci 2025; 8:951-977. [PMID: 40242588 PMCID: PMC11997895 DOI: 10.1021/acsptsci.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer ranks among the top triumvirate leading causes of human deaths worldwide. The pathological mechanisms are notably intricate, demonstrating proliferative and metastatic capabilities, which complicate therapeutic interventions. The sigma-1 receptor (σ1R) plays a crucial role in tumor survival and migration, while the sigma-2 receptor (σ2R) is intimately associated with tumor proliferation. This review encapsulated the investigation concerning σ1R and σ2R in neoplasms and rigorously summarized the ligands and radio-ligands development and their tumor applications, such as antitumor cell proliferation and PET/SPECT imaging in tumors. A comprehensive classification discussion was undertaken regarding the chemical structures and emphasized the possibility of dual/multitargeted ligands. Ultimately, we discussed the effects of chiral structures and the pharmacological characteristics of ligands on affinity and pharmacokinetic features in vivo, particularly concerning radiopharmaceuticals. This review functions as a beneficial resource, fostering ligand deployment and stimulating the generation of innovative ideas for developing innovative radiopharmaceuticals.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
- School
of Medical Imaging, North Sichuan Medical
College, NanChong 637100, China
- Department
of Nuclear Medicine, Affiliated Hospital
of North Sichuan Medical College, North Sichuan Medical College, NanChong 637000, China
| | - Na Sun
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Yanxi Ma
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Song Zhang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| |
Collapse
|
2
|
Lomuscio MC, Corriero N, Nanna V, Piccinno A, Saviano M, Lanzilotti R, Abate C, Alberga D, Mangiatordi GF. SIGMAP: an explainable artificial intelligence tool for SIGMA-1 receptor affinity prediction. RSC Med Chem 2025; 16:835-848. [PMID: 39618965 PMCID: PMC11605305 DOI: 10.1039/d4md00722k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/03/2024] [Indexed: 02/21/2025] Open
Abstract
Developing sigma-1 receptor (S1R) modulators is considered a valuable therapeutic strategy to counteract neurodegeneration, cancer progression, and viral infections, including COVID-19. In this context, in silico tools capable of accurately predicting S1R affinity are highly desirable. Herein, we present a panel of 25 classifiers trained on a curated dataset of high-quality bioactivity data of small molecules, experimentally tested as potential S1R modulators. All data were extracted from ChEMBL v33, and the models were built using five different fingerprints and machine-learning algorithms. Remarkably, most of the developed classifiers demonstrated good predictive performance. The best-performing model, which achieved an AUC of 0.90, was developed using the support vector machine algorithm with Morgan fingerprints. To provide additional, user-friendly information for medicinal chemists in the rational design of S1R modulators, two independent explainable artificial intelligence (XAI) approaches were employed, namely Shapley Additive exPlanations (SHAP) and Contrastive Explanation. The top-performing model is accessible through a user-friendly web platform, SIGMAP (https://www.ba.ic.cnr.it/softwareic/sigmap/), specifically developed for this purpose. With its intuitive interface, robust predictive power, and implemented XAI approaches, SIGMAP serves as a valuable tool for the rational design of new and more effective S1R modulators.
Collapse
Affiliation(s)
- Maria Cristina Lomuscio
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), Università degli Studi di Bari Aldo Moro Piazza Giulio Cesare, 11, Policlinico 70124 Bari Italy
| | - Nicola Corriero
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
| | - Vittoria Nanna
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
| | - Antonio Piccinno
- Department of Computer Science, University of Bari "Aldo Moro" Via E. Orabona, 4 I-70125 Bari Italy
| | - Michele Saviano
- CNR - Institute of Crystallography Via Vivaldi 43 81100 Caserta Italy
| | - Rosa Lanzilotti
- Department of Computer Science, University of Bari "Aldo Moro" Via E. Orabona, 4 I-70125 Bari Italy
| | - Carmen Abate
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro" Via E. Orabona, 4 I-70125 Bari Italy
| | - Domenico Alberga
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
| | | |
Collapse
|
3
|
Zampieri D, Fortuna S, Romano M, Amata E, Dichiara M, Marrazzo A, Pasquinucci L, Turnaturi R, Mamolo MG. Design, synthesis and biological evaluation of novel aminopropylcarboxamide derivatives as sigma ligands. Bioorg Med Chem Lett 2022; 72:128860. [PMID: 35724925 DOI: 10.1016/j.bmcl.2022.128860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
In our continuing effort to develop novel sigma receptor (SR) ligands, we present the design, synthesis and binding studies of a small library of aminopropylcarboxamide derivatives, obtained from a deconstruction of the piperidine ring of previously synthesized piperidine-based compounds. The best results were achieved with benzofuran (5c, 5g) and quinoline (5a, 5e) derivatives. These compounds revealed the highest affinity for both receptor subtypes. In particular, the 3,4-dimethoxyphenyl derivatives 5e and 5g showed the highest selectivity profile for S2R, especially the quinoline derivative 5e exhibited a 35-fold higher affinity for S2R subtype. The cytotoxic activity of aforementioned compounds was evaluated against SKBR3 and MCF7 cell lines, widely used for breast cancer studies. Whereas the potency of 5g was similar that of Siramesine and Haloperidol in both cell lines, compounds 5a, 5c and 5e exhibited a potency at least comparable to that of Haloperidol in SKBR3 cells. A molecular modelling evaluation towards the S2R binding site, confirmed the strong interaction of compound 5e thus justifying its highest S2R affinity.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Via E. Melen 83, 16152 Genova, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Valerio 28/1, 34127 Trieste, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Maria Grazia Mamolo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
4
|
Wilson LL, Alleyne AR, Eans SO, Cirino TJ, Stacy HM, Mottinelli M, Intagliata S, McCurdy CR, McLaughlin JP. Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules 2022; 27:molecules27113617. [PMID: 35684553 PMCID: PMC9182558 DOI: 10.3390/molecules27113617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10–45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6–20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44–1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.
Collapse
Affiliation(s)
- Lisa L. Wilson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Amy R. Alleyne
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Thomas J. Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
- Correspondence: ; Tel.: +1-352-273-7207
| |
Collapse
|
5
|
Kim HY, Lee JY, Hsieh CJ, Riad A, Izzo NJ, Catalano SM, Graham TJA, Mach RH. Screening of σ 2 Receptor Ligands and In Vivo Evaluation of 11C-Labeled 6,7-Dimethoxy-2-[4-(4-methoxyphenyl)butan-2-yl]-1,2,3,4-tetrahydroisoquinoline for Potential Use as a σ 2 Receptor Brain PET Tracer. J Med Chem 2022; 65:6261-6272. [PMID: 35404616 DOI: 10.1021/acs.jmedchem.2c00191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, a panel of 46 compounds containing five different scaffolds known to have high σ2 receptor affinity were screened. 6,7-Dimethoxy-2-[4-(4-methoxyphenyl)butan-2-yl]-1,2,3,4-tetrahydroisoquinoline [(±)-7] (Ki for σ1 = 48.4 ± 7.7 nM, and Ki for σ2 = 0.59 ± 0.02 nM) and its desmethyl analogue, (±)-8 (Ki for σ1 = 108 ± 35 nM, and Ki for σ2 = 4.92 ± 0.59 nM), showed excellent binding affinity and subtype selectivity for σ2 receptors. In vitro cell binding indicated that σ2 receptor binding of [11C]-(±)-7 and [11C]-(±)-8 was dependent on TMEM97 protein expression. In PET studies, the peak brain uptake of [11C]-(±)-7 (8.28 ± 2.52%ID/cc) was higher than that of [11C]-(±)-8 (4.25 ± 0.97%ID/cc) with specific distribution in the cortex and hypothalamus. Brain uptake or tissue binding was selectively inhibited by ligands with different σ2 receptor binding affinities. The results suggest [11C]-(±)-7 can be used as a PET radiotracer for imaging the function of σ2 receptors in central nervous system disorders.
Collapse
Affiliation(s)
- Ho Young Kim
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ji Youn Lee
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Chia-Ju Hsieh
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Aladdin Riad
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nicholas J Izzo
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania 15203-5118, United States
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania 15203-5118, United States
| | - Thomas J A Graham
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
Barbaraci C, Giurdanella G, Leotta CG, Longo A, Amata E, Dichiara M, Pasquinucci L, Turnaturi R, Prezzavento O, Cacciatore I, Zuccarello E, Lupo G, Pitari GM, Anfuso CD, Marrazzo A. Haloperidol Metabolite II Valproate Ester ( S)-(-)-MRJF22: Preliminary Studies as a Potential Multifunctional Agent Against Uveal Melanoma. J Med Chem 2021; 64:13622-13632. [PMID: 34477381 PMCID: PMC8474110 DOI: 10.1021/acs.jmedchem.1c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Increased angiogenesis and vascular endothelial growth factor (VEGF) levels contribute to higher metastasis and mortality in uveal melanoma (UM), an aggressive malignancy of the eye in adults. (±)-MRJF22, a prodrug of the sigma (σ) ligand haloperidol metabolite II conjugated with the histone deacetylase (HDAC) inhibitor valproic acid, has previously demonstrated a promising antiangiogenic activity. Herein, the asymmetric synthesis of (R)-(+)-MRJF22 and (S)-(-)-MRJF22 was performed to investigate their contribution to (±)-MRJF22 antiangiogenic effects in human retinal endothelial cells (HREC) and to assess their therapeutic potential in primary human uveal melanoma (UM) 92-1 cell line. While both enantiomers displayed almost identical capabilities to reduce cell viability than the racemic mixture, (S)-(-)-MRJF22 exhibited the highest antimigratory effects in endothelial and tumor cells. Given the fundamental contribution of cell motility to cancer progression, (S)-(-)-MRJF22 may represent a promising candidate for novel antimetastatic therapy in patients with UM.
Collapse
Affiliation(s)
- Carla Barbaraci
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.,Vera Salus Ricerca S.r.l., Via Sigmund Freud 62/B, 96100 Siracusa, Italy
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | | | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy
| | - Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York 10032, United States
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | | | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
7
|
Combination of Heme Oxygenase-1 Inhibition and Sigma Receptor Modulation for Anticancer Activity. Molecules 2021; 26:molecules26133860. [PMID: 34202711 PMCID: PMC8270315 DOI: 10.3390/molecules26133860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a multifactorial disease that may be tackled by targeting different signaling pathways. Heme oxygenase-1 (HO-1) and sigma receptors (σRs) are both overexpressed in different human cancers, including prostate and brain, contributing to the cancer spreading. In the present study, we investigated whether HO-1 inhibitors and σR ligands, as well a combination of the two, may influence DU145 human prostate and U87MG human glioblastoma cancer cells proliferation. In addition, we synthesized, characterized, and tested a small series of novel hybrid compounds (HO-1/σRs) 1–4 containing the chemical features needed for HO-1 inhibition and σR modulation. Herein, we report for the first time that targeting simultaneously HO-1 and σR proteins may be a good strategy to achieve increased antiproliferative activity against DU145 and U87MG cells, with respect to the mono administration of the parent compounds. The obtained outcomes provide an initial proof of concept useful to further optimize the structure of HO-1/σRs hybrids to develop novel potential anticancer agents.
Collapse
|
8
|
Liu CZ, Mottinelli M, Nicholson HE, McVeigh BM, Wong NK, McCurdy CR, Bowen WD. Identification and characterization of MAM03055A: A novel bivalent sigma-2 receptor/TMEM97 ligand with cytotoxic activity. Eur J Pharmacol 2021; 906:174263. [PMID: 34144027 DOI: 10.1016/j.ejphar.2021.174263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Sigma-2 receptor/transmembrane protein 97 (TMEM97) is upregulated in cancer cells compared to normal cells. Traditional sigma-2 receptor agonists induce apoptosis and autophagy, making them of interest in cancer therapy. Recently, we reported a novel metabolically stimulative function of the sigma-2 receptor, showing increased 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and stimulation of glycolytic hallmarks. 6-Substituted analogs of the canonical sigma-2 receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), produce both metabolically stimulative and cytotoxic effects. Here, we compare the activities of two related compounds: 6-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (CM571), the 6-amino derivative of SN79, which binds with high affinity to both sigma-1 and sigma-2 receptors, and 1,3-bis(3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)thiourea (MAM03055A), a homo-bivalent dimer of CM571. MAM03055A resulted from the degradation of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one (CM572), the cytotoxic 6-isothiocyanato SN79 derivative. MAM03055A exhibited high affinity and strong preference for sigma-2 receptors (sigma-1 Ki = 3371 nM; sigma-2 receptor Ki = 55.9 nM). Functionally, MAM03055A treatment potently induced cell death in SK-N-SH neuroblastoma, MDA-MB-231 breast, and both SW48 and SW480 colorectal cancer cell lines, causing proapoptotic BH3 interacting-domain death agonist (BID) cleavage in SK-N-SH cells. Conversely, CM571 induced metabolic stimulation. CM571 bound reversibly to both receptors, while MAM03055A bound pseudo-irreversibly to sigma-2 receptors and caused residual cytotoxic activity after acute exposure and removal of the compound from the media. Interestingly, MAM03055A induced a time-dependent loss of sigma-2 receptor/TMEM97 protein from cells, whereas monomer CM571 had no effect on receptor levels. These results suggest that monovalent and bivalent sigma-2 receptor ligands in this series interact differently with the receptor, thus resulting in divergent effects.
Collapse
Affiliation(s)
- Cheri Z Liu
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hilary E Nicholson
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Bridget M McVeigh
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Neelum K Wong
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Wayne D Bowen
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|