1
|
Hagar FF, Abbas SH, Atef E, Abdelhamid D, Abdel-Aziz M. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023). Mol Divers 2025; 29:1821-1849. [PMID: 39031290 PMCID: PMC11909089 DOI: 10.1007/s11030-024-10907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman Atef
- College of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Chen X, Mu X, Ding L, Wang X, Mao F, Wei J, Liu Q, Xu Y, Ni S, Jia L, Li J. Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent. Acta Pharm Sin B 2024; 14:729-750. [PMID: 38322326 PMCID: PMC10840436 DOI: 10.1016/j.apsb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 02/08/2024] Open
Abstract
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xianggang Mu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lele Ding
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xi Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Natarajan R, Kumar P, Subramani A, Siraperuman A, Angamuthu P, Bhandare RR, Shaik AB. A Critical Review on Therapeutic Potential of Benzimidazole Derivatives: A Privileged Scaffold. Med Chem 2024; 20:311-351. [PMID: 37946342 DOI: 10.2174/0115734064253813231025093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).
Collapse
Affiliation(s)
- Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Padma Kumar
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Arunkumar Subramani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, lndia
| | - Amuthalakshmi Siraperuman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Prabakaran Angamuthu
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
4
|
Zhou L, Lin X, Zhang L, Chen S, Chen J, Zhou Z, Tang A, Ruan J, Wang X, Chen B. Neddylation pathway promotes myeloid-derived suppressor cell infiltration via NF-κB-mCXCL5 signaling in lung cancer. Int Immunopharmacol 2022; 113:109329. [DOI: 10.1016/j.intimp.2022.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
5
|
Basha NJ. Therapeutic Efficacy of Benzimidazole and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous Bengaluru, India
| |
Collapse
|
6
|
Fenbendazole and its synthetic analog interfere with HeLa cells’ proliferation and energy metabolism via inducing oxidative stress and modulating MEK3/6-p38-MAPK pathway. Chem Biol Interact 2022; 361:109983. [DOI: 10.1016/j.cbi.2022.109983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023]
|
7
|
Feng LS, Su WQ, Cheng JB, Xiao T, Li HZ, Chen DA, Zhang ZL. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019-2021). Arch Pharm (Weinheim) 2022; 355:e2200051. [PMID: 35385159 DOI: 10.1002/ardp.202200051] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
8
|
Tyagi YK, Jali G, Singh R. Synthesis and Anti-Cancer Applications of Benzimidazole Derivatives - Recent Studies. Anticancer Agents Med Chem 2022; 22:3280-3290. [PMID: 36221180 DOI: 10.2174/1871520622666220429134818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a life-threatening disease. Anti-cancer drugs are the focus of research. The heterocyclic molecules like benzimidazole occupy a central position in searching for novel and effective anti-cancer drugs. The medicinal chemists designed and synthesized several benzimidazole derivatives and conjugates to evaluate them as potential anti-cancer agents. OBJECTIVE The purpose of this compilation of literature is to cover the progress of benzimidazole-based anti-cancer agents, their synthesis, and their evaluation for cancer disease treatment. METHODS The recent literatures have been collected from various search engines and peer-reviewed journals. RESULTS The compounds like benzimidazole derivatives of dehydroabietic acid, piperidyl benzimidazole carboxamide, benzimidazole-quinazolinone hybrids, benzimidazole-thiazole conjugate, and benzimidazole pendant cyanopyrimidine derivatives have been discussed in detail. CONCLUSION This review article will help the medicinal chemists to design and synthesize benzimidazole-based molecules and evaluate them as anti-cancer agents.
Collapse
Affiliation(s)
- Yogesh K Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Geetan Jali
- Department of Chemistry, Kirori Mal College, University of Delhi, New Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| |
Collapse
|
9
|
Liang Q, Liu M, Li J, Tong R, Hu Y, Bai L, Shi J. NAE modulators: A potential therapy for gastric carcinoma. Eur J Med Chem 2022; 231:114156. [DOI: 10.1016/j.ejmech.2022.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
10
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
11
|
Satija G, Sharma B, Madan A, Iqubal A, Shaquiquzzaman M, Akhter M, Parvez S, Khan MA, Alam MM. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Garvit Satija
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Barkha Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Anish Madan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Ashif Iqubal
- Department of Pharmacology School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Suhel Parvez
- Department of Toxicology School of Chemical and Life Sciences, Jamia Hamdard New Delhi India
| | - Mohammad Ahmed Khan
- Department of Pharmacology School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| |
Collapse
|