1
|
Singh A, Maity S, Devi P, Rai A, Asati V. Recent progress and structural insights of potential Hsp90 inhibitors as anticancer agents. Mol Divers 2025:10.1007/s11030-025-11160-3. [PMID: 40100483 DOI: 10.1007/s11030-025-11160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Hsp90, or heat shock protein 90, a well-preserved molecular chaperone that is essential for the coordination of numerous biological pathways and cellular processes. Hsp90 is a molecular chaperone, which promises a target for cancer treatment. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and demonstrated promise in treating a variety of illnesses, particularly cancer. Hsp90 inhibitors, however, have been encountered a number of challenges during the clinical development process, such as low efficacy, toxicity, and drug resistance. This literature survey emphasizes the importance of HSP90 inhibitors incorporating diverse heterocyclic rings, such as pyrazole, indole, pyrimidine, triazole, and thioquinazoline, which have exhibited promising anticancer activity. This review covers several parameters, including kinetic investigation, binding interactions, IC50 value, structure-activity relationship, and molecular docking studies of the most potent compound. There are several heterocyclic small molecules under investigation in clinical studies, such as AUY922, SNX-5422, STA-9090, and others. This review also contained a patent of HSP90 inhibitors, which showed greater effectiveness. Therefore, the main objective of this paper is to summarize all recent developments in the creation of anticancer medications that target HSP90 inhibitors in order to treat anticancer disease.
Collapse
Affiliation(s)
- Aastha Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Subhadip Maity
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Priya Devi
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Aman Rai
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
2
|
Yan X, Wang F, Peng T, He Y, Zhang QB, Yang Y. Diastereoselective Construction of Bridged Azabicyclo[3.2.1]octane via Copper-Catalyzed Formal [4 + 3] Cycloaddition. J Org Chem 2025; 90:806-813. [PMID: 39791138 DOI: 10.1021/acs.joc.4c02801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A novel copper-catalyzed formal diastereoselective [4 + 3] cycloaddition of 2-arylaziridines and 2-substituted cyclopentadiene was developed. This transformation provided an efficient protocol for the assembly of a highly strained bridged azabicyclo[3.2.1]octane scaffold, which is widespread in bioactive natural products. A likely mechanism showed that the reaction proceeds through [3 + 2] cycloaddition, ring opening, and aza-Michael addition cascade reaction. This protocol features high efficiency and diastereoselectivity, wide functional group compatibility, and a cheap catalyst.
Collapse
Affiliation(s)
- Xu Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Fang Wang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Tonghui Peng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Yulong He
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Qing-Bao Zhang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Yang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
3
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
4
|
Almehmadi SJ, Sabour R, Kassem AF, Abbas EMH, Alsaedi AMR, Farghaly TA. Novel tropane analogues as Hsp90 inhibitors targeting colon cancer: Synthesis, biological estimation, and molecular docking study. Bioorg Chem 2024; 150:107497. [PMID: 38852311 DOI: 10.1016/j.bioorg.2024.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
New derivatives of tropane scaffold were prepared from the reaction of their thione or thioamide derivatives with α-halocarbonyl compounds. The structures of all new derivatives were assured and proved with their spectral data. The novel tropane derivatives were examined for their cytotoxicity on two colon tumor cell lines; Caco2 and HCT116 cells. The most active compounds 3, 4, 5, 9d and 14a displayed significant antitumor activities with IC50 range of 9.50 - 30.15 μM compared to doxorubicin. Moreover, they revealed reduced cytotoxic effect on WI-38 normal ones, signifying their great safety. With the aim of better understanding the inhibitory potential of such compounds on heat-shock protein 90 (Hsp90), there activities were assessed against such enzyme demonstrating high inhibitory activities with IC50 range of 56.58-78.85 nM. Western blotting was carried out to ensure the inhibitory activity on Hsp90, results showed that 3 markedly suppressed Hsp90 expression on Caco2 cell line. Additionally, a molecular docking analysis of the most potent derivatives at the Hsp90 binding site was carried out in order to approve the performed in vitro assays.
Collapse
Affiliation(s)
- Samar J Almehmadi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rehab Sabour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa F Kassem
- Chemistry Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia; Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo 12622, Egypt
| | - Eman M H Abbas
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo 12622, Egypt
| | - Amani M R Alsaedi
- Department of Chemistry, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Crespo Monteiro M, Vale JR, Siopa F. 2-Azabicyclo[3.2.1]octane scaffold: synthesis and applications. Org Biomol Chem 2024; 22:2902-2915. [PMID: 38526533 DOI: 10.1039/d4ob00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
2-Azabicyclo[3.2.1]octanes are nitrogen containing heterocycles with significant potential in the field of drug discovery. This core has been applied as key synthetic intermediate in several total synthesis, while their unique structure can make them a challenging scaffold to acquire. This Minireview summarizes the synthetic approaches to access this bicyclic architecture and highlights its presence in the total synthesis of several target molecules.
Collapse
Affiliation(s)
- Mariana Crespo Monteiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - João Rafael Vale
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Filipa Siopa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
6
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Zhao S, Liu J, Lv Z, Zhang G, Xu Z. Recent updates on 1,2,3-triazole-containing hybrids with in vivo therapeutic potential against cancers: A mini-review. Eur J Med Chem 2023; 251:115254. [PMID: 36893627 DOI: 10.1016/j.ejmech.2023.115254] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
1,2,3-Triazole moiety which is usually constructed by highly versatile, efficacious and selective copper-catalyzed azide-alkyne cycloaddition not only can act as a linker to connect different pharmacophores, but also is a useful pharmacophore with diverse biological properties. 1,2,3-Triazoles are readily interact with diverse enzymes and receptors in cancer cells through non-covalent interactions and can inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. In particular, 1,2,3-triazole-containing hybrids have the potential to exert dual or multiple anticancer mechanisms of action, representing useful scaffolds in expediting development of novel anticancer agents. The current review summarizes the in vivo anticancer efficacy and mechanisms of action of 1,2,3-triazole-containing hybrids reported in the last decade to continuously open up a map for the remarkable exploration of more effective candidates.
Collapse
Affiliation(s)
- Shijia Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China
| | - Zaosheng Lv
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China
| | - Guangde Zhang
- Engineering Training Center, Wuhan University of Science and Technology, Wuhan, PR China.
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
8
|
Alosaimy AM, Abouzied AS, M. R. Alsaedi A, Alafnan A, Alamri A, Alamri MA, Khaled Bin Break M, Sabour R, Farghaly TA. Discovery of novel indene-based hybrids as breast cancer inhibitors targeting Hsp90: Synthesis, bio-evaluation and molecular docking study. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
9
|
Li L, Zhang L, Liao T, Zhang C, Chen K, Huang Q. Advances on pharmacology and toxicology of aconitine. Fundam Clin Pharmacol 2022; 36:601-611. [PMID: 35060168 DOI: 10.1111/fcp.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Aconitum alkaloids are considered to be the characteristic bioactive ingredients of Aconitum species, which are widely applied to the treatment of diverse diseases, and aconitine (AC) is found in most Aconitum plants. Research evidence shows that low-dose AC has a good therapeutic potential in heart failure, myocardial infarction, neuroinflammatory diseases, rheumatic diseases, and tumors, which has become one of the hotspots in global research in recent years. However, the cardiotoxicity and neurotoxicity of AC have also attracted extensive attention. Excessive use of AC always induces ventricular tachyarrhythmia and heart arrest, even can be potentially lethal. Therefore, AC cannot simply be regarded as a good medicine or a toxicant, but its underlying curative and toxic properties remained chaos. In order to dig the unique pharmacological value of AC while preventing its toxicity, the pharmacological activities and toxic effects of AC were summarized in this paper, providing new insight into the safe and effective use of AC in clinical practice.
Collapse
Affiliation(s)
- Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, China
| | - Limin Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Piven YA, Yastrebova MA, Khamidullina AI, Scherbakov AM, Tatarskiy VV, Rusanova JA, Baranovsky AV, Zinovich VG, Khlebnicova TS, Lakhvich FA. Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes targeting HSP90-HER2 axis in breast cancer cells. Bioorg Med Chem 2022; 53:116521. [PMID: 34844036 DOI: 10.1016/j.bmc.2021.116521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023]
Abstract
Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes were designed as potential HSP90 inhibitors. A series of the compounds was synthesized by oximation of (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-ones followed by O-acylation with acylamidobenzoic acids. The obtained compounds showed an antiproliferative effect on three breast cancer cell lines (MCF7, MDA-MB-231 and HCC1954). Compound 16s exhibited high antiproliferative potency against HCC1954 breast cancer cells with the IC50 value of 6 µM was selected for in-depth evaluation. Compound 16s did not inhibit the growth of normal epithelial cells. We have demonstrated that the compound 16s can induce apoptosis in cancer cells via inhibition of HSP90 "client" proteins including a key oncogenic receptor, HER2/neu. Described here compounds can be considered for further basic and preclinical investigation as a part of HSP90/HER2-targeted therapies.
Collapse
Affiliation(s)
- Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Julia A Rusanova
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine
| | - Alexander V Baranovsky
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Veronica G Zinovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| |
Collapse
|
11
|
Xu S, Yang F, Fan H, Zhao X, Xu Y, Wang S, Zhang X. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-promoted reduction of azides to amines under metal-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00341d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and novel metal-free reduction of azides to amines in the presence of DBU is reported. This DBU-promoted transformation features good functional group tolerance and high chemo-selectivity.
Collapse
Affiliation(s)
- Shijie Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fan Yang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Fan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuechun Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuo Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxiang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Zhao W, Liu J, Li Y, Chen Z, Qi D, Zhang Z. Immune Effect of Active Components of Traditional Chinese Medicine on Triple-Negative Breast Cancer. Front Pharmacol 2021; 12:731741. [PMID: 34925002 PMCID: PMC8678494 DOI: 10.3389/fphar.2021.731741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers are heterogeneous, poorly prognostic, and metastatic malignancies that result in a high risk of death for patients. Targeted therapy for triple-negative breast cancer has been extremely challenging due to the lack of expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Clinical treatment regimens for triple-negative breast cancer are often based on paclitaxel and platinum drugs, but drug resistance and side effects from the drugs frequently lead to treatment failure, thus requiring the development of new therapeutic platforms. In recent years, research on traditional Chinese medicine in modulating the immune function of the body has shown that it has the potential to be an effective treatment option against triple-negative breast cancer. Active components of herbal medicines such as alkaloids, flavonoids, polyphenols, saponins, and polysaccharides have been shown to inhibit cancer cell proliferation and metastasis by activating inflammatory immune responses and can modulate tumor-related signaling pathways to further inhibit the invasion of triple-negative breast cancer. This paper reviews the immunomodulatory mechanisms of different herbal active ingredients against triple-negative breast cancer and provides an outlook on the challenges and directions of development for the treatment of triple-negative breast cancer with herbal active ingredients.
Collapse
Affiliation(s)
- Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhua Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zichao Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongmei Qi
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|