1
|
Gao L, Liu J, Zhang R, Chen X, Wang M, Dong Y, Frasinyuk MS, Zhang W, Watt D, Meng W, Xue J, Liu C, Cheng Y, Liu X. A novel amino-pyrimidine inhibitor suppresses tumor growth via microtubule destabilization and Bmi-1 down-regulation. Biochem Pharmacol 2025; 233:116783. [PMID: 39880315 DOI: 10.1016/j.bcp.2025.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay. The stable cell line harboring the Bmi-1 reporter gene was utilized to screen 300 compounds, leading to the identification of an amino-pyrimidine compound, APD-94. In vitro, APD-94 markedly inhibited cancer cell proliferation and decreased Bmi-1 expression at both the RNA and protein levels. In vivo, APD-94 repressed the growth of HT29 cell xenografts in NOD/SCID mice without notable side effects. Flow cytometry results demonstrated that APD-94 induced G2/M phase arrest and apoptosis in cells. APD-94 was identified as a novel inhibitor of microtubule polymerization by directly targeting the tubulin. Furthermore, APD-94 was more effective in overcoming the resistance to paclitaxel in paclitaxel-resistant A549/Tax cells. This bifunctional inhibitor is a promising candidate drug for CRC treatment.
Collapse
Affiliation(s)
- Lijie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Mykhaylo S Frasinyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv 02094 Ukraine
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Wenxiang Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
2
|
Lai Q, Wang Z, Wu C, Zhang R, Li L, Tao Y, Mo D, Zhang J, Gou L, Wang Y. Design, synthesis, and antitumor evaluation of quinazoline-4-tetrahydroquinoline chemotypes as novel tubulin polymerization inhibitors targeting the colchicine site. Eur J Med Chem 2025; 283:117139. [PMID: 39662284 DOI: 10.1016/j.ejmech.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
We designed, synthesized, and evaluated the antitumor activity of a series of novel quinazoline-4-(6-methoxytetrahydroquinoline) analogues. Among the tested compounds, 4a4 exhibited the most potent antiproliferative activities across four human cancer cell lines with half-maximal inhibitory concentration (IC50) values ranging from 0.4 to 2.7 nM, more potent than the lead compound. The 2.71 Å resolution co-crystal structure of 4a4 with tubulin (PDB code: 8YER) confirmed its critical binding at the colchicine site. Moreover, 4a4 inhibited the polymerization of tubulin, colony formation, and tumor cell migration, while inducing G2/M phase arrest and apoptosis. In vivo, 4a4 significantly delayed primary tumor growth in the SKOV3 xenograft model without obvious side effect. Our research enhances the structure-activity relationships (SARs) understanding of the quinazoline-4-tetrahydroquinoline scaffold and provides new insights for potential structural optimization and the development of novel colchicine binding site inhibitors (CBSIs).
Collapse
Affiliation(s)
- Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhijia Wang
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruofei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leyan Li
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China; Course of Biological Sciences, Department of Life Science, Imperial College London, United Kingdom
| | - Yiran Tao
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Mo
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
3
|
Lu L, Li K, Pu J, Wang S, Liang T, Wang J. Dual-target inhibitors of colchicine binding site for cancer treatment. Eur J Med Chem 2024; 274:116543. [PMID: 38823265 DOI: 10.1016/j.ejmech.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Colchicine binding site inhibitors (CBSIs) have attracted much attention due to their antitumor efficacies and the advantages of inhibiting angiogenesis and overcoming multidrug resistance. However, no CBSI has been currently approved for cancer treatment due to the insufficient efficacies, serious toxicities and poor pharmacokinetic properties. Design of dual-target inhibitors is becoming a potential strategy for cancer treatment to improve anticancer efficacy, decrease adverse events and overcome drug resistance. Therefore, we reviewed dual-target inhibitors of colchicine binding site (CBS), summarized the design strategies and the biological activities of these dual-target inhibitors, expecting to provide inspiration for developing novel dual inhibitors based on CBS.
Collapse
Affiliation(s)
- Lu Lu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Keke Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Jiaxin Pu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Shaochi Wang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Tingting Liang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China; The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan Province, 450000, China.
| | - Jianhong Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China.
| |
Collapse
|
4
|
Li X, Wu H, Feng KW, Xu J, Wu S, Zhou ZZ, Li XF. Discovery of polymethoxyphenyl-pyridines bearing amino side chains as tubulin colchicine-binding site inhibitors. Bioorg Med Chem 2022; 73:117007. [PMID: 36150341 DOI: 10.1016/j.bmc.2022.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
Nineteen TH03 analogues were designed and synthesized as tubulin colchicine-binding site inhibitors with potent antiproliferative activities. Among these compounds, 3,5-dimethoxyphenylpyridines 8j bearing a 4-methoxybenzyl aniline side-chain displayed the best antiproliferative activities against glioma (U87MG and U251). In addition, the trimethoxyphenylpyridine 8o bearing a 4-methyl-N-methyl aniline side-chain showed the best antiproliferative activities against colon carcinoma and lung cancer with the lowest IC50 value (0.09 µM < IC50 < 0.86 µM). Compared with CA-4, Compounds 8j and 8o displayed lower cytotoxicities toward normal cells but higher antiproliferative activities against RKO (IC50 = 0.15 µM and 0.09 µM respectively), NCI-H1299 (IC50 = 0.73 µM and 0.14 µM respectively), and A549 cells (IC50 = 0.86 µM and 0.37 µM respectively). Further investigations revealed that 8o shows higher tubulin polymerization inhibitory activity (IC50 = 3.1 ± 0.5 µM) than colchicine (IC50 = 8.6 ± 0.2 µM), and induced cell cycle arrest at the G2/M phase and cellular apoptosis through disrupting the microtubule network.
Collapse
Affiliation(s)
- XiaoYang Li
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - HuanXian Wu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai-Wen Feng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - JiaHuan Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaoyu Wu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Fang Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Sadovnikov KS, Vasilenko DA, Gracheva YA, Zefirov NA, Radchenko EV, Palyulin VA, Grishin YK, Vasilichin VA, Shtil AA, Shevtsov PN, Shevtsova EF, Kuznetsova TS, Kuznetsov SA, Bunev AS, Zefirova ON, Milaeva ER, Averina EB. Novel substituted 5-methyl-4-acylaminoisoxazoles as antimitotic agents: Evaluation of selectivity to LNCaP cancer cells. Arch Pharm (Weinheim) 2022; 355:e2100425. [PMID: 35103336 DOI: 10.1002/ardp.202100425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/07/2022]
Abstract
A series of novel antimitotic agents was designed using the replacement of heterocyclic cores in two tubulin-targeting lead molecules with the acylated 4-aminoisoxazole moiety. Target compounds were synthesized via heterocyclization of β-aryl-substituted vinylketones by tert-butyl nitrite in the presence of water as a key step. 4-Methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1aa) was found to stimulate partial depolymerization of microtubules of human lung carcinoma A549 cells at a high concentration of 100 µM and to totally inhibit cell growth (IC50 = 0.99 µM) and cell viability (IC50 = 0.271 µM) in the nanomolar to submicromolar concentration range. These data provide evidence of the multitarget profile of the cytotoxic action of compound 1aa. The SAR study demonstrated that the 3,4,5-trimethoxyphenyl residue is the key structural parameter determining the efficiency both towards tubulin and other molecular targets. The cytotoxicity of 3-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1ab) to the androgen-sensitive human prostate adenocarcinoma cancer cell line LNCaP (IC50 = 0.301 µM) was approximately one order of magnitude higher than that to the conditionally normal cells lines WI-26 VA4 (IC50 = 2.26 µM) and human umbilical vein endothelial cells (IC50 = 5.58 µM) and significantly higher than that to primary fibroblasts (IC50 > 75 µM).
Collapse
Affiliation(s)
- Kirill S Sadovnikov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dmitry A Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yulia A Gracheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolay A Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Alexander A Shtil
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.,Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Pavel N Shevtsov
- Institute of Physiologically Active Compounds, Chernogolovka MR, Russian Federation
| | - Elena F Shevtsova
- Institute of Physiologically Active Compounds, Chernogolovka MR, Russian Federation
| | - Tamara S Kuznetsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergei A Kuznetsov
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Rostock, Germany
| | - Alexander S Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russian Federation
| | - Olga N Zefirova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena R Milaeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
6
|
Khalil KD, Riyadh SM, Jaremko M, Farghaly TA, Hagar M. Synthesis of Chitosan-La 2O 3 Nanocomposite and Its Utility as a Powerful Catalyst in the Synthesis of Pyridines and Pyrazoles. Molecules 2021; 26:3689. [PMID: 34204215 PMCID: PMC8234470 DOI: 10.3390/molecules26123689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Recently, the development of nanocatalysts based on naturally occurring polysaccharides has received a lot of attention. Chitosan (CS), as a biodegradable and biocompatible polysaccharide, is considered to be an excellent template for the design of a hybrid biopolymer-based metal oxide nanocomposite. In this case, lanthanum oxide nanoparticles doped with chitosan at different weight percentages (5, 10, 15, and 20 wt% CS/La2O3) were prepared via a simple solution casting method. The prepared CS/La2O3 nanocomposite solutions were cast in a Petri dish in order to produce the developed catalyst, which was shaped as a thin film. The structural features of the hybrid nanocomposite film were studied by FTIR, SEM, and XRD analytical tools. FTIR spectra confirmed the presence of the major characteristic peaks of chitosan, which were modified by interaction with La2O3 nanoparticles. Additionally, SEM graphs showed dramatic morphological changes on the surface of chitosan, which is attributed to surface adsorption with La2O3 molecules. The prepared CS/La2O3 nanocomposite film (15% by weight) was investigated as an effective, recyclable, and heterogeneous base catalyst in the synthesis of pyridines and pyrazoles. The nanocomposite used was sufficiently stable and was collected and reused more than three times without loss of catalytic activity.
Collapse
Affiliation(s)
- Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.R.); (T.A.F.)
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia;
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.R.); (T.A.F.)
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Almunawrah 30002, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.R.); (T.A.F.)
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah 21514, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia;
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|