1
|
Liang P, Chen S, Liu X, Teng S, Wang S. Base-promoted cascade vinylogous Michael/Michael addition of alkylidene succinimides for the construction of penta-substituted cyclopentanes. Org Biomol Chem 2024; 22:8832-8837. [PMID: 39405033 DOI: 10.1039/d4ob01455c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Herein, an efficient, base catalyzed cascade vinylogous Michael/Michael cycloaddition reaction of α-alkylidene succinimides and oxindole-derived pyrazolones has been successfully developed. A variety of highly functionalized cyclopentanes fused with spirooxindoles were obtained in good yields, with excellent diastereoselectivities and exclusive vinylogous site-selectivities. This strategy represents the first example of α-alkylidene succinimides serving as nucleophilic reagents to trigger a vinylogous cascade reaction.
Collapse
Affiliation(s)
- Peiyao Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Siyi Chen
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Xin Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Shenghan Teng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Shoulei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| |
Collapse
|
2
|
Lv W, Li M, Tao Y. Bridged Bicyclic Lactam Enables Chemically Recyclable Nylon. Angew Chem Int Ed Engl 2024; 63:e202402541. [PMID: 38502026 DOI: 10.1002/anie.202402541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Nylon, a widely-used high-performance thermoplastic, boasts exceptional durability and resistance to various solvents and weak acids, making it indispensable across diverse applications. However, its nonbiodegradable nature has led to alarming environmental pollution in land and oceans. Chemical recycling to monomers (CRM) stands as a crucial strategy for establishing a circular plastic economy, but the CRM of nylon remains largely unexplored. Herein, we introduce the bridged bicyclic lactam 5-azabicyclo[2.2.1]octan-6-one (5/6-LM), evolved from δ-valerolactam and pyrrolidone, to solve the trade-off in depolymerizability and performance. Notably, 5/6-LM exhibits nearly 95 % conversion in mild polymerization conditions and efficient depolymerization catalyzed by lewis acids. This compound is synthetically accessible from commercially available chemicals in a single step at room temperature, demonstrating high efficiency and scalability up to 50 g in laboratory. Furthermore, the resulting polyamide displays remarkable attributes including high crystallinity and thermostability up to 283 °C, significantly broadening the scope of chemically recyclable nylons.
Collapse
Affiliation(s)
- Wenxiu Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
3
|
Niu Y, Yao L, Zhao H, Tang X, Zhao Q, Wu Y, Han B, Huang W, Zhan G. Construction of Cyclopentanes Consisting of Five Stereocenters via NHC-Catalyzed Cascade Reactions of Enals with Oxindole-Dienones. Org Lett 2023; 25:8445-8450. [PMID: 37975710 DOI: 10.1021/acs.orglett.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Despite the widespread presence of the chiral cyclopentane motif, the asymmetric synthesis of cyclopentanes containing five stereocenters remains a formidable challenge. Here, we present an N-heterocyclic carbene (NHC)-catalyzed cascade reaction of enal and oxindole-dienone, which allows access to spiroxindole cyclopentanes featuring a complete set of chiral centers on the five-membered carbocycle. This strategy, characterized by the formation of multiple bonds and chiral centers, demonstrates a broad substrate scope, exclusive diastereoselectivity, and up to 99:1 er.
Collapse
Affiliation(s)
- Yadi Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Laiping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Hongli Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yuling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
4
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
5
|
New MraY AA Inhibitors with an Aminoribosyl Uridine Structure and an Oxadiazole. Antibiotics (Basel) 2022; 11:antibiotics11091189. [PMID: 36139968 PMCID: PMC9495235 DOI: 10.3390/antibiotics11091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.
Collapse
|