1
|
Staneva D, Said AI, Grozdanov P, Nikolova I, Stoyanova R, Jordanova A, Grabchev I. Light-driven self-sterilizing cotton fabric and drug delivery: improvement of the antimicrobial activity of 4-sulfo-1,8-naphthalimide via its dendrimer and metallic dendrimer formation. Photochem Photobiol Sci 2025; 24:593-606. [PMID: 40249570 DOI: 10.1007/s43630-025-00710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
The search for new bioactive substances with microbiological activity is dictated by the increasing resistance of the drugs used in clinical practice against various pathogenic microorganisms. In this respect, particular attention is paid to the modified dendrimers with biologically active substances and their metal complexes. This work describes synthesizing and characterizing a new copper complex of first-generation polypropylene imine (PPI) dendrimer, modified with 4-sulfo-1,8-naphthalimide. The new metallodendrimer [Cu2(E)(NO3)4] has been characterized by IR and electron paramagnetic resonance (EPR) spectroscopy. Two copper ions were found to form a complex with the dendrimer ligand. Cotton fabrics were treated with the dendrimer ligand (E), its monomer structural analog (M), and metallodendrimer. The microbiological activity of the three compounds and the treated cotton fabrics with them has been tested in the dark and after light irradiation against bacterial strains: Gram-positive B. cereus and Gram-negative P. aeruginosa. The results showed that the metallodendrimer was slightly more effective than the dendrimer ligand E and monomer M, and their activity was enhanced after light irradiation. The increase in antimicrobial activity after light irradiation was due to the generation of highly reactive singlet oxygen, which damages bacteria's cell membrane, leading to their inactivation. The similar activity against both types of bacteria indicates that all three compounds can be classified as broad-spectrum antimicrobial agents. The virucidal effects of the studied compounds were also tested against human adenovirus type 5 (HAdV5) and human respiratory syncytial virus (HRSV-S2) after 30 min/60 min. The newly synthesized compounds showed no activity against HAdV-5, but the activity against HSV-2 viruses increases with the prolongation of their interaction.
Collapse
Affiliation(s)
- Desislava Staneva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria.
| | - Awad I Said
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407, Sofia, Bulgaria
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Albena Jordanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407, Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407, Sofia, Bulgaria.
| |
Collapse
|
2
|
Laurent R, Maraval V, Bernardes-Génisson V, Caminade AM. Dendritic Pyridine-Imine Copper Complexes as Metallo-Drugs. Molecules 2024; 29:1800. [PMID: 38675623 PMCID: PMC11052306 DOI: 10.3390/molecules29081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.
Collapse
Affiliation(s)
- Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Valérie Maraval
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Vania Bernardes-Génisson
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| |
Collapse
|
3
|
Pricl S. The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics 2023; 15:2013. [PMID: 37514199 PMCID: PMC10384593 DOI: 10.3390/pharmaceutics15072013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
COST Action CA17140 Cancer Nanomedicine-from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, preclinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies. By promoting scientific exchanges, technological implementation, and innovative solutions, the action aims at providing a timely instrument to rationalize and focus research efforts at the European level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies. Within CA17140, dendrimers in all their forms (from covalent to self-assembling dendrons) play a vital role as powerful nanotheranostic agents in oncology; therefore, the purpose of this review work is to gather and summarize the major results in the field stemming from collaborative efforts in the framework of the European Nano2Clinic COST Action.
Collapse
Affiliation(s)
- Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Zheng Y, Wei K, Gao Y, Zhou Z, Zheng X, Li J, Qi J. Comparative evaluation of the structure and antitumor mechanism of mononuclear and trinucleated thiosemicarbazone Cu(II) complexes. J Inorg Biochem 2023; 240:112116. [PMID: 36592511 DOI: 10.1016/j.jinorgbio.2022.112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The ratio of ligand to Cu(II) ions has an essential effect on the geometrical configuration and anti-tumour activity of metal-based complexes. In this work, we synthesised two Cu(II) thiosemicarbazone complexes, namely, [Cu(L)(Cl)] (C1) and [Cu3(L)2(Cl)4] (C2), by controlling the ratio of Cu(II) ion to ligand, to evaluate their anti-tumour activity. The ability of C1 to catalyze hydrogen peroxide to produce reactive oxygen species (ROS) was significantly higher than that of Cu(II) ion. Moreover, the bridge of Cu(II) and two molecules generated a new complex (C2), which, in contrast to C1, enhanced the generation of Fenton-like-triggered ROS. Consequently, the produced ROS depleted reduced glutathione, caused oxidative cell stress and promoted apoptosis through mitochondrial apoptotic pathways. In addition, C2 exhibited better tumour suppression than C1 in a nude mouse tumour xenograft model.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Kai Wei
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ziyan Zhou
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiuling Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
5
|
Duan D, Cai F, Wu Y, Gong Q, Huang A, Yi D, Li Y, Lai Y, Peng XJ. Base-catalyzed monofunctionalization of N-alkyl activated azaarenes to construct 2-Iminoderivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
de la Mata FJ, Gómez R, Cano J, Sánchez‐Nieves J, Ortega P, Gallego SG. Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1871. [PMID: 36417901 DOI: 10.1002/wnan.1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Javier Sánchez‐Nieves
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Sandra García Gallego
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| |
Collapse
|
7
|
Maciel D, Nunes N, Santos F, Fan Y, Li G, Shen M, Tomás H, Shi X, Rodrigues J. New insights into ruthenium(II) metallodendrimers as anticancer drug nanocarriers: from synthesis to preclinic behaviour. J Mater Chem B 2022; 10:8945-8959. [PMID: 36278302 DOI: 10.1039/d2tb01280d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dendrimers have been studied as promising materials for the delivery of anticancer drugs. In this work, low-generation (0-2) nitrile poly(alkylidenamine)-based dendrimers were explored as nanocarriers for the organometallic complex [Ru(η5-C5H5)(PPh3)2]+ (RuCp+) and investigated for their anticancer action and involved mechanisms, which were evaluated both in vitro and in vivo. It was observed that their biological behaviour is generation dependent, where the highest generation metallodendrimer (G2Ru) was overall more effective than the other metallodendrimers. G2Ru was active against a set of six cancer cell lines, revealing its important selectivity for these cells (the IC50 values were about 4-fold lower than that for non-cancer cells). Importantly, the in vivo studies with G2Ru in an MCF-7 xenograft mouse model showed that it exhibited low systemic toxicity, low accumulation in the main organs of the mice, preferential accumulation in the tumour, and remarkable capacity to limit tumour growth. The in vitro and in vivo studies revealed that G2Ru caused high levels of cell necrosis and apoptosis. The in vitro cell death mechanism studies showed the capacity of G2Ru to induce mitochondrial depolarization and ROS production. Altogether, pre-clinical results indicated G2Ru as a promising anticancer drug and the potential of low-generation poly(alkylidenamine)-based dendrimers as drug nanocarriers.
Collapse
Affiliation(s)
- Dina Maciel
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. /
| | - Nádia Nunes
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. /
| | - Francisco Santos
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. /
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. /
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. /
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. /
| |
Collapse
|
8
|
Staneva D, Manov H, Vasileva‐Tonkova E, Kukeva R, Stoyanova R, Grabchev I. Enhancing the antibacterial activity of
PAMAM
dendrimer modified with 1,8‐naphthalimides and its copper complex via light illumination. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Desislava Staneva
- Department of Textile, Leader and Fuels University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Hristo Manov
- Faculty of Chemistry and Pharmacy Sofia University “St. Kliment Ohridski” Sofia Bulgaria
| | | | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry Bulgarian Academy of Sciences Sofia Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry Bulgarian Academy of Sciences Sofia Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine Sofia University “St. Kliment Ohridski” Sofia Bulgaria
| |
Collapse
|
9
|
Amphiphilic Triazine-Phosphorus Metallodendrons Possessing Anti-Cancer Stem Cell Activity. Pharmaceutics 2022; 14:pharmaceutics14020393. [PMID: 35214126 PMCID: PMC8880151 DOI: 10.3390/pharmaceutics14020393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Dendritic molecules bearing metal complexes in their structure (metallodendrimers and metallodendrons) are considered prospective therapeutic entities. In particular, metallodendrons raise interest as antitumor agents for the treatment of poorly curable or drug-resistant tumors. Herein, we have synthesized amphiphilic triazine-phosphorus dendrons bearing multiple copper (II) or gold (III) complexes on the periphery and a branched hydrophobic fragment at the focal point. Due to their amphiphilic nature, metallodendrons formed single micelles (mean diameter ~9 nm) or multi-micellar aggregates (mean diameter ~60 nm) in a water solution. We have tested the antitumor activity of amphiphilic metallodendrons towards glioblastoma, a malignant brain tumor with a notoriously high level of therapy resistance, as a model disease. The metallodendrons exhibit higher cytotoxic activity towards glioblastoma stem cells (BTSC233, JHH520, NCH644, and SF188 cell lines) and U87 glioblastoma cells (IC50 was 3–6 µM for copper-containing dendron and 11–15 µM for gold-containing dendron) in comparison with temozolomide (IC50 >100 µM)—the clinical standard of care for glioblastoma. Our findings show the potential of metallodendron-based nanoformulations as antitumor entities.
Collapse
|
10
|
Canonico B, Cangiotti M, Montanari M, Papa S, Fusi V, Giorgi L, Ciacci C, Ottaviani MF, Staneva D, Grabchev I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol Chem 2021; 403:345-360. [PMID: 34883001 DOI: 10.1515/hsz-2021-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | | | - Desislava Staneva
- University of Chemical Technology and Metallurgy, BG-1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Sofia University "St. Kliment Ohridski", Faculty of Medicine, BG-1407 Sofia, Bulgaria
| |
Collapse
|
11
|
Llamazares C, Sanz del Olmo N, Soliveri J, de la Mata FJ, Copa-Patiño JL, García-Gallego S. Insight on the Structure-to-Activity of Carbosilane Metallodendrimers in the Fight against Staphylococcus aureus Biofilms. Antibiotics (Basel) 2021; 10:589. [PMID: 34067558 PMCID: PMC8156651 DOI: 10.3390/antibiotics10050589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Biofilm formation is a critical health concern, involved in most human bacterial infections. Combatting this mechanism, which increases resistance to traditional antibiotics and host immune defences, requires novel therapeutic approaches. The remarkable biocide activity and the monodispersity of carbosilane metallodendrimers make them excellent platforms to evaluate the impact of different structural parameters on the biological activity. In this work, we explore the influence of iminopyridine ring substituents on the antibacterial activity against planktonic and biofilm Staphylococcus aureus. New families of first-generation Ru(II) and Cu(II) metallodendrimers were synthesised and analysed, in comparison to the non-substituted counterparts. The results showed that the presence of methyl or methoxy groups in meta position to the imine bond decreased the overall positive charge on the metal ion and, subsequently, the activity against planktonic bacteria. However, it seemed a relevant parameter to consider for the prevention of biofilm formation, if they contribute to increasing the overall lipophilicity. An optimum balance of the charge and lipophilicity of the metallodrug, accomplished through structural design, will provide effective biocide agents against bacteria biofilms.
Collapse
Affiliation(s)
- Celia Llamazares
- University of Alcala, Department of Biomedicine and Biotechnology, 28805 Madrid, Spain; (C.L.); (J.S.); (J.L.C.-P.)
| | - Natalia Sanz del Olmo
- University of Alcala, Research Institute in Chemistry “Andrés M. del Río” (IQAR) and Faculty of Science, Department of Organic and Inorganic Chemistry, 28805 Madrid, Spain; (N.S.d.O.); (F.J.d.l.M.)
| | - Juan Soliveri
- University of Alcala, Department of Biomedicine and Biotechnology, 28805 Madrid, Spain; (C.L.); (J.S.); (J.L.C.-P.)
| | - F. Javier de la Mata
- University of Alcala, Research Institute in Chemistry “Andrés M. del Río” (IQAR) and Faculty of Science, Department of Organic and Inorganic Chemistry, 28805 Madrid, Spain; (N.S.d.O.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- University of Alcala, Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - José Luis Copa-Patiño
- University of Alcala, Department of Biomedicine and Biotechnology, 28805 Madrid, Spain; (C.L.); (J.S.); (J.L.C.-P.)
| | - Sandra García-Gallego
- University of Alcala, Research Institute in Chemistry “Andrés M. del Río” (IQAR) and Faculty of Science, Department of Organic and Inorganic Chemistry, 28805 Madrid, Spain; (N.S.d.O.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- University of Alcala, Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|