1
|
Xu B, Yu T, Liu HY, Liu H, Lai WJ, Guan Y, Gong L, Li YL, Zeng R, Ouyang Q. Design, synthesis, and biological activity study of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives against multidrug resistance in Eca109/VCR cells. Eur J Med Chem 2025; 291:117542. [PMID: 40186894 DOI: 10.1016/j.ejmech.2025.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The advent of multidrug resistance (MDR) in tumors markedly diminishes the effectiveness of anticancer therapies. P-glycoprotein (P-gp) plays a crucial role in tumor MDR by mediating the efflux of drugs and cytotoxic agents. Presently, small molecule agents targeting P-gp are among the promising therapeutic approaches to counteract MDR. In previous research, our team identified a novel class of P-gp inhibitors featuring a 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline scaffold. To further delineate the structure-activity relationship, this study conducted an extensive structural optimization, synthesizing 42 novel compounds. Evaluation on the drug-resistant cell line Eca109/VCR indicated that the majority of these compounds exhibited remarkable MDR-reversing activity. Notably, the optimized compound 41 demonstrated an outstanding ability to reverse MDR, with a reversal fold of up to 467.7, surpassing the efficacy of the standard third-generation P-gp inhibitor TQ, as evidenced by plate cloning assay and flow cytometry analysis. Subsequent mechanism validation experiments-including western blotting, chemosensitization tests, and fluorescent substrate accumulation assays-complemented by molecular docking studies, confirmed that compound 41 exerts its MDR-reversing effects through P-gp inhibition. This research offers new perspectives for the development of drug sensitizers targeting resistant tumors based on the tetrahydroisoquinoline scaffold.
Collapse
Affiliation(s)
- Bo Xu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China; Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Tao Yu
- Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Hong-Yuan Liu
- Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - He Liu
- Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Wen-Jing Lai
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China; Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Yu Guan
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China; Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Liang Gong
- Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.
| | - Rong Zeng
- Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China; Department of Gastroenterology, Xinqiao Hospital, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing, 400038, China.
| |
Collapse
|
2
|
Yu T, Zeng R, Guan Y, Pan B, Li HW, Gu J, Zheng PF, Qian Y, Ouyang Q. Discovery of new tricyclic spiroindole derivatives as potent P-glycoprotein inhibitors for reversing multidrug resistance enabled by a synthetic methodology-based library. RSC Med Chem 2024; 15:1675-1685. [PMID: 38784466 PMCID: PMC11110728 DOI: 10.1039/d4md00136b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024] Open
Abstract
The discovery of novel and highly effective P-gp inhibitors is considered to be an effective strategy for overcoming tumor drug resistance. In this paper, a phenotypic screening via a self-constructed synthetic methodology-based library identified a new class of tricyclic spiroindole derivatives with excellent tumor multidrug resistance reversal activity. A stereospecific compound OY-103-B with the best reversal activity was obtained based on a detailed structure-activity relationship study, metabolic stability optimization and chiral resolution. For the VCR-resistant Eca109 cell line (Eca109/VCR), co-administration of 5.0 μM OY-103-B resulted in a reversal fold of up to 727.2, superior to the typical third-generation P-gp inhibitor tariquidar. Moreover, the compound inhibited the proliferation of Eca109/VCR cells in a concentration-dependent manner in plate cloning and flow cytometry. Furthermore, fluorescence substrate accumulation assay and chemotherapeutic drug reversal activity tests demonstrated that OY-103-B reversed tumor drug resistance via P-gp inhibition. In conclusion, this study provides a novel skeleton that inspires the design of new P-gp inhibitors, laying the foundation for the treatment of drug-resistant tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Rong Zeng
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
- Department of Gastroenterology, Xinqiao Hospital, The Second Affiliated Hospital of Army Medical University (Third Military Medical University) Chongqing 400037 China
| | - Yu Guan
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Bin Pan
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Hong-Wei Li
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Jing Gu
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Peng-Fei Zheng
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| |
Collapse
|
3
|
Sentyabreva A, Miroshnichenko E, Artemova D, Alekseeva A, Kosyreva A. Morphological and Molecular Biological Characteristics of Experimental Rat Glioblastoma Tissue Strains Induced by Different Carcinogenic Chemicals. Biomedicines 2024; 12:713. [PMID: 38672069 PMCID: PMC11048177 DOI: 10.3390/biomedicines12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive human neoplasm with poor prognosis due to its malignancy and therapy resistance. To evaluate the efficacy of antitumor therapy, cell models are used most widely, but they are not as relevant to human GBMs as tissue models of gliomas, closely corresponding to human GBMs in cell heterogeneity. In this work, we compared three different tissue strains of rat GBM 101.8 (induced by DMBA), GBM 11-9-2, and GBM 14-4-5 (induced by ENU). MATERIALS AND METHODS We estimated different gene expressions by qPCR-RT and conducted Western blotting and histological and morphometric analysis of three different tissue strains of rat GBM. RESULTS GBM 101.8 was characterized by the shortest period of tumor growth and the greatest number of necroses and mitoses; overexpression of Abcb1, Sox2, Cdkn2a, Cyclin D, and Trp53; and downregulated expression of Vegfa, Pdgfra, and Pten; as well as a high level of HIF-1α protein content. GBM 11-9-2 and GBM 14-4-5 were relevant to low-grade gliomas and characterized by downregulated Mgmt expression; furthermore, a low content of CD133 protein was found in GBM 11-9-2. CONCLUSIONS GBM 101.8 is a reliable model for further investigation due to its similarity to high-grade human GBMs, while GBM 11-9-2 and GBM 14-4-5 correspond to Grade 2-3 gliomas.
Collapse
Affiliation(s)
- Alexandra Sentyabreva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Artemova
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Alekseeva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
4
|
AbdelSamad AL, El-Saadi MT, Gouda AM, AboulMagd AM. Pyrrolizine/indolizine-bearing (un)substituted isoindole moiety: design, synthesis, antiproliferative and MDR reversal activities, and in silico studies. RSC Adv 2023; 13:30753-30770. [PMID: 37869384 PMCID: PMC10587743 DOI: 10.1039/d3ra05310e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Two new series of pyrrolizine/indolizine derivative-bearing (un)substituted isoindole moiety were designed and synthesized. The anticancer potential of the new compounds was evaluated against hepatocellular carcinoma (HepG-2), colorectal carcinoma, colon cancer (HCT-116), and breast cancer (MCF-7) cell lines. Compounds 6d and 6o were the most potent derivatives with IC50 values ranging from 6.02 to 13.87 μM against HePG-2, HCT-116, and MCF-7 cell lines. Moreover, methyl analog of the fluoro-substituted indolizine derivative 6m revealed significant antiproliferative activity against HePG-2, HCT-116, and MCF-7 cancer cell lines with IC50 values of 11.97, 28.37, and 19.87 μM, respectively. The most active anticancer analogs, 6d, 6m, and 6o, were inspected for their putative mechanism of action by estimating their epidermal growth factor receptor (EGFR) and cyclin-dependent kinase (CDK 2) inhibitory activities. Thus, compound 6o displayed the most inhibitory activity against EGFR and CDK 2 with IC50 values of 62 and 118 nM, respectively. Additionally, the quantitative real-time PCR analysis for the P-glycoprotein effect of compounds 6d, 6m, and 6o was performed, in which compound 6o illustrated significant down-regulation of P-gp against the HepG-2 cell line by 0.2732 fold. Mechanistic studies for the most active compounds involving the reversal doxorubicin (DOX) effect of compounds 6d, 6m, and 6o were performed, which illustrated cytotoxic activity with IC50 22.27, 3.88, and 8.79 μM, respectively. Moreover, the apoptotic activity of the most active derivative 6o on HCT-116 cancer cells showed accumulation in the G1 and S phases of the cell cycle.
Collapse
Affiliation(s)
- Amr L AbdelSamad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Mohammed T El-Saadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch Ismailia Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Asmaa M AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| |
Collapse
|
5
|
Dong J, Yuan L, Hu C, Cheng X, Qin JJ. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review. Pharmacol Ther 2023; 249:108488. [PMID: 37442207 DOI: 10.1016/j.pharmthera.2023.108488] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Can Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
6
|
Wang C, Zhang J, Wei X, Yang M, Ma W, Yu R, Liu M, Jiang T. Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance. Mar Drugs 2023; 21:md21050314. [PMID: 37233508 DOI: 10.3390/md21050314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Multidrug resistance (MDR) caused by ATP-Binding Cassette Subfamily B Member 1 (ABCB1, P-glycoprotein, P-gp) is a major barrier for the success of chemotherapy in clinics. In this study, we designed and synthesized a total of 19 Lissodendrins B analogues and tested their ABCB1-mediated MDR reversal activity in doxorubicin (DOX)-resistant K562/ADR and MCF-7/ADR cells. Among all derivatives, compounds D1, D2, and D4 with a dimethoxy-substituted tetrahydroisoquinoline fragment possessed potent synergistic effects with DOX and reversed ABCB1-mediated drug resistance. Notably, the most potent compound D1 merits multiple activities, including low cytotoxicity, the strongest synergistic effect, and effectively reversing ABCB1-mediated drug resistance of K562/ADR (RF = 1845.76) and MCF-7/ADR cells (RF = 207.86) to DOX. As a reference substance, compound D1 allows for additional mechanistic studies on ABCB1 inhibition. The synergistic mechanisms were mainly related to the increased intracellular accumulation of DOX via inhibiting the efflux function of ABCB1 rather than from affecting the expression level of ABCB1. These studies suggest that compound D1 and its derivatives might be potential MDR reversal agents acting as ABCB1 inhibitors in clinical therapeutics and provide insight into a design strategy for the development of ABCB1 inhibitors.
Collapse
Affiliation(s)
- Chaoming Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jinman Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianfeng Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Weiping Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
7
|
Zeng R, Yang XM, Li HW, Li X, Guan Y, Yu T, Yan P, Yuan W, Niu SL, Gu J, Chen YC, Ouyang Q. Simplified Derivatives of Tetrandrine as Potent and Specific P-gp Inhibitors to Reverse Multidrug Resistance in Cancer Chemotherapy. J Med Chem 2023; 66:4086-4105. [PMID: 36892076 DOI: 10.1021/acs.jmedchem.2c02061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Targeted inhibition of a drug efflux transporter P-glycoprotein (P-gp) is an important strategy to reverse multidrug resistance in cancer chemotherapy. In this study, a rationally structural simplification to natural tetrandrine was performed based on molecular dynamics simulation and fragment growth, leading to an easily prepared, novel, and simplified compound OY-101 with high reversal activity and low cytotoxicity. Its excellent synergistic anti-cancer effect with vincristine (VCR) against drug-resistant cells Eca109/VCR was confirmed by reversal activity assay, flow cytometry, plate clone formation assay, and drug synergism analysis (IC50 = 9.9 nM, RF = 690). Further mechanism study confirmed that the OY-101 was a specific and efficient P-gp inhibitor. Importantly, OY-101 increased VCR sensitization in vivo without obvious toxicity. Overall, our findings may provide an alternative strategy for the design of novel specific P-gp inhibitor as an anti-tumor chemotherapy sensitizer.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Xiu-Ming Yang
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Hong-Wei Li
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Xue Li
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Yu Guan
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Tao Yu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Peng Yan
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Wen Yuan
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Sheng-Li Niu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Jing Gu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Ying-Chun Chen
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Qin Ouyang
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Identification and Empiric Evaluation of New Inhibitors of the Multidrug Transporter P-Glycoprotein (ABCB1). Int J Mol Sci 2023; 24:ijms24065298. [PMID: 36982374 PMCID: PMC10049699 DOI: 10.3390/ijms24065298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The expression of the drug efflux pump ABCB1 correlates negatively with cancer survival, making the transporter an attractive target for therapeutic inhibition. In order to identify new inhibitors of ABCB1, we have exploited the cryo-EM structure of the protein to develop a pharmacophore model derived from the best docked conformations of a structurally diverse range of known inhibitors. The pharmacophore model was used to screen the Chembridge compound library. We identified six new potential inhibitors with distinct chemistry compared to the third-generation inhibitor tariquidar and with favourable lipophilic efficiency (LipE) and lipophilicity (CLogP) characteristics, suggesting oral bioavailability. These were evaluated experimentally for efficacy and potency using a fluorescent drug transport assay in live cells. The half-maximal inhibitory concentrations (IC50) of four of the compounds were in the low nanomolar range (1.35 to 26.4 nM). The two most promising compounds were also able to resensitise ABCB1-expressing cells to taxol. This study demonstrates the utility of cryo-electron microscopy structure determination for drug identification and design.
Collapse
|
9
|
Yousef TA, Alhamzani AG, Abou-Krisha MM, Kanthimathi G, Raghu M, Kumar KY, Prashanth M, Jeon BH. Synthesis, molecular docking study and anticancer activity of novel 1,3,4-oxadiazole derivatives as potential tubulin inhibitors. Heliyon 2023; 9:e13460. [PMID: 36846693 PMCID: PMC9947267 DOI: 10.1016/j.heliyon.2023.e13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The current study reports on the synthesis and anticancer efficacy of novel oxadiazole derivatives (8a-f) as tubulin polymerization inhibitors. NMR, mass, and elemental studies were used to confirm the newly produced compounds. In contrast to the conventional medicine colchicine, compounds 8e and 8f demonstrated stronger sensitivity and improved IC50 values in the range of 3.19-8.21 μM against breast MCF-7, colorectal HCT116, and liver HepG2 cancer cell lines. The target compounds were tested for enzymatic activity against the tubulin enzyme. Compounds 8e and 8f were shown to have the most effective inhibitory action among the new compounds, with IC50 values of 7.95 and 9.81 nM, respectively. As compared to the reference drug, molecular docking investigations of the developed compounds revealed the crucial hydrogen bonding in addition to the hydrophobic interaction at the binding site, assisting in the prediction of the structural requirements for the found anticancer activity. These findings indicate that the 1,3,4-oxadizole scaffold has the potential for future research into new anticancer medicines.
Collapse
Affiliation(s)
- Tarek A. Yousef
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Egypt
| | - Abdulrahman G. Alhamzani
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mortaga M. Abou-Krisha
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Department of Chemistry, South Valley University, Qena, 83523, Egypt
| | - G. Kanthimathi
- Department of Chemistry, Ramco Institute of Technology, Rajapalayam, Tamilnadu, 626117, India
| | - M.S. Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru 560 103, India
| | - K. Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, 562 112, India
| | - M.K. Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru 560 070, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
10
|
Discovery of a novel highly potent and low-toxic jatrophane derivative enhancing the P-glycoprotein-mediated doxorubicin sensitivity of MCF-7/ADR cells. Eur J Med Chem 2022; 244:114822. [DOI: 10.1016/j.ejmech.2022.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
11
|
Novel Epoxides of Soloxolone Methyl: An Effect of the Formation of Oxirane Ring and Stereoisomerism on Cytotoxic Profile, Anti-Metastatic and Anti-Inflammatory Activities In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23116214. [PMID: 35682893 PMCID: PMC9181525 DOI: 10.3390/ijms23116214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and βO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18βH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and β-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7–4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and βO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and βO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.
Collapse
|
12
|
LC-MS Profiled Chemical Constituents, Molecular Modeling, and In vitro Bioactivity Evaluations of Suaeda vermiculata Extracts as Anti-Hepatocellular Carcinoma Preparation: Assessment of the Constituents’ Role, and Receptor Docking Feasibility Based Activity Projections. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Yalcin-Ozkat G. Molecular Modeling Strategies of Cancer Multidrug Resistance. Drug Resist Updat 2021; 59:100789. [PMID: 34973929 DOI: 10.1016/j.drup.2021.100789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering and Architecture, Bioengineering Department, 53100, Rize, Turkey; Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| |
Collapse
|
15
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Gomaa HA, Youssif BG, Radwan MO, Fujita M, Otsuka M, Abdel-Aziz M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Abourehab MAS, Alqahtani AM, Almalki FA, Zaher DM, Abdalla AN, Gouda AM, Beshr EAM. Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules 2021; 26:6582. [PMID: 34770990 PMCID: PMC8588198 DOI: 10.3390/molecules26216582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
In the current study, eight new hybrids of the NSAIDs, ibuprofen and ketoprofen with five pyrrolizine/indolizine derivatives were designed and synthesized. The chemical structures of these hybrids were confirmed by spectral and elemental analyses. The antiproliferative activities of these hybrids (5 μM) was investigated against MCF-7, A549, and HT-29 cancer cell lines using the cell viability assay, MTT assay. The results revealed 4-71% inhibition of the growth of the three cancer cell lines, where 8a,e,f were the most active. In addition, an investigation of the antiproliferative activity of 8a,e,f against MCF-7 cells revealed IC50 values of 7.61, 1.07, and 3.16 μM, respectively. Cell cycle analysis of MCF-7 cells treated with the three hybrids at 5 μM revealed a pro-apoptotic increase in cells at preG1 and cell cycle arrest at the G1 and S phases. In addition, the three hybrids induced early apoptotic events in MCF-7 cells. The results of the molecular docking of the three hybrids into COX-1/2 revealed higher binding free energies than their parent compounds 5a,c and the co-crystallized ligands, ibuprofen and SC-558. The results also indicated higher binding free energies toward COX-2 over COX-1. Moreover, analysis of the binding modes of 8a,e,f into COX-2 revealed partial superposition with the co-crystallized ligand, SC-558 with the formation of essential hydrogen bonds, electrostatic, or hydrophobic interactions with the key amino acid His90 and Arg513. The new hybrids also showed drug-likeness scores in the range of 1.06-2.03 compared to ibuprofen (0.65) and ketoprofen (0.57). These results above indicated that compounds 8a,e,f deserve additional investigation as potential anticancer candidates.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.M.A.); (F.A.A.)
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.M.A.); (F.A.A.)
| | - Dana M. Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Ahmed M. Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Eman A. M. Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| |
Collapse
|
17
|
New methods for the synthesis of pyrrolo[1,2-x][1,4]diazepines and their (het)arene-annulated analogs (microreview). Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Almalki FA, Shawky AM, Abdalla AN, Gouda AM. Icotinib, Almonertinib, and Olmutinib: A 2D Similarity/Docking-Based Study to Predict the Potential Binding Modes and Interactions into EGFR. Molecules 2021; 26:molecules26216423. [PMID: 34770832 PMCID: PMC8588130 DOI: 10.3390/molecules26216423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
In the current study, a 2D similarity/docking-based study was used to predict the potential binding modes of icotinib, almonertinib, and olmutinib into EGFR. The similarity search of icotinib, almonertinib, and olmutinib against a database of 154 EGFR ligands revealed the highest similarity scores with erlotinib (0.9333), osimertinib (0.9487), and WZ4003 (0.8421), respectively. In addition, the results of the docking study of the three drugs into EGFR revealed high binding free energies (ΔGb = −6.32 to −8.42 kcal/mol) compared to the co-crystallized ligands (ΔGb = −7.03 to −8.07 kcal/mol). Analysis of the top-scoring poses of the three drugs was done to identify their potential binding modes. The distances between Cys797 in EGFR and the Michael acceptor sites in almonertinib and olmutinib were determined. In conclusion, the results could provide insights into the potential binding characteristics of the three drugs into EGFR which could help in the design of new more potent analogs.
Collapse
Affiliation(s)
- Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Central Laboratory for Micro-analysis, Minia University, Minia 61519, Egypt
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Ahmed M. Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: or ; Tel.: +20-1126897483; Fax: +20-822162133
| |
Collapse
|
19
|
In Silico Approach Using Free Software to Optimize the Antiproliferative Activity and Predict the Potential Mechanism of Action of Pyrrolizine-Based Schiff Bases. Molecules 2021; 26:molecules26134002. [PMID: 34209011 PMCID: PMC8271847 DOI: 10.3390/molecules26134002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/11/2023] Open
Abstract
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.
Collapse
|
20
|
Shawky AM, Ibrahim NA, Abdalla AN, Abourehab MAS, Gouda AM. Novel pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety: design, synthesis, molecular docking, and biological evaluation as potential multi-target cytotoxic agents. J Enzyme Inhib Med Chem 2021; 36:1313-1333. [PMID: 34154478 PMCID: PMC8221158 DOI: 10.1080/14756366.2021.1937618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the present study, two new series of pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety were designed, synthesised, and evaluated for their cytotoxic activity. The benzamide derivatives 16a-e showed higher cytotoxicity than their corresponding Schiff bases 15a-e. Compounds 16a,b,d also inhibited the growth of MCF-7/ADR cells with IC50 in the range of 0.52-6.26 μM. Interestingly, the new compounds were less cytotoxic against normal MRC-5 cells (IC50=0.155-17.08 μM). Mechanistic studies revealed the ability of compounds 16a,b,d to inhibit tubulin polymerisation and multiple oncogenic kinases. Moreover, compounds 16a,b,d induced preG1 and G2/M cell cycle arrest and early apoptosis in MCF-7 cells. The molecular docking analyses of compounds 16a,b,d into the active site in tubulin, CDK-2, and EGFR proteins revealed higher binding affinities compared to the co-crystallised ligands. These preliminary results suggested that compounds 16a,b,d could serve as promising lead compounds for the future development of new potent anticancer agents.HighlightsTwo new series of pyrrolizines bearing 3,4,5-trimethoxyphenyl moieties were synthesized.Compounds 16a,b,d displayed the highest cytotoxicity against the three cancer cell lines.Kinase profiling test revealed inhibition of multiple oncogenic kinases by compounds 16a,b,d.Compounds 16a,b,d exhibited weak to moderate inhibition of tubulin-polymerization.Compounds 16a,b,d induced preG1 and G2/M cell cycle arrest and early apoptosis in MCF-7 cells.Docking studies revealed high binding affinities for compounds 16a,b towards tubulin and CDK-2.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia.,Central Laboratory for Micro-analysis, Minia University, Minia, Egypt
| | - Nashwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Li Q, Chen L, Jian XE, Lv DX, You WW, Zhao PL. Design, synthesis and antiproliferative activity of novel 2,4-diamino-5-methyleneaminopyrimidine derivatives as potential anticancer agents. Bioorg Med Chem Lett 2021; 47:128213. [PMID: 34157389 DOI: 10.1016/j.bmcl.2021.128213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
In order to discover new anticancer agents, 25 novel 2,4-diamino-5-methyleneaminopyrimidine derivatives were designed and synthesized based on our previous work via a ring-opening strategy. Among them, compared with 5-FU, compound 7i exhibited 4.9-, 2.9-, 2.1-, and 3.0-fold improvement in inhibiting HCT116, HT-29, MCF-7, and HeLa cells proliferation with IC50 values of 4.93, 5.57, 8.84, and 14.16 μM, respectively. Moreover, further mechanistic studies indicated that compound 7i could concentration-dependently induce cell cycle arrest and apoptosis in HCT116 cells. These findings revealed that 2,4-diamino-5-methyleneaminopyrimidine scaffold has potential for further investigation to explore novel anticancer agents.
Collapse
Affiliation(s)
- Qiu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|