1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Sedlář A, Vrbata D, Pokorná K, Holzerová K, Červený J, Kočková O, Hlaváčková M, Doubková M, Musílková J, Křen V, Kolář F, Bačáková L, Bojarová P. Glycopolymer Inhibitors of Galectin-3 Suppress the Markers of Tissue Remodeling in Pulmonary Hypertension. J Med Chem 2024; 67:9214-9226. [PMID: 38829964 PMCID: PMC11181325 DOI: 10.1021/acs.jmedchem.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding β-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - David Vrbata
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Kateřina Pokorná
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Kristýna Holzerová
- Laboratory
of Developmental Cardiology, Institute of
Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Jakub Červený
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 CZ-128
43, Czech Republic
| | - Olga Kočková
- Laboratory
of Analytical Chemistry, Institute of Macromolecular
Chemistry of the Czech Academy of Sciences, Heyrovského nám. 1888, Prague 6 CZ-162 00, Czech Republic
| | - Markéta Hlaváčková
- Laboratory
of Developmental Cardiology, Institute of
Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Martina Doubková
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Jana Musílková
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Vladimír Křen
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - František Kolář
- Laboratory
of Developmental Cardiology, Institute of
Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Lucie Bačáková
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Pavla Bojarová
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Health Care Disciplines and Population Protection, Faculty of Biomedical
Engineering, Czech Technical University
in Prague, nám.
Sítná 3105, Kladno CZ-272 01, Czech Republic
| |
Collapse
|
3
|
Müllerová M, Hovorková M, Závodná T, Červenková Št́astná L, Krupková A, Hamala V, Nováková K, Topinka J, Bojarová P, Strašák T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023; 24:4705-4717. [PMID: 37680126 PMCID: PMC10646984 DOI: 10.1021/acs.biomac.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Galectins, the glycan binding proteins, and their respective carbohydrate ligands represent a unique fundamental regulatory network modulating a plethora of biological processes. The advances in galectin-targeted therapy must be based on a deep understanding of the mechanism of ligand-protein recognition. Carbosilane dendrimers, the well-defined and finely tunable nanoscaffolds with low toxicity, are promising for multivalent carbohydrate ligand presentation to target galectin receptors. The study discloses a synthetic method for two types of lactose-functionalized carbosilane glycodendrimers (Lac-CS-DDMs). Furthermore, we report their outstanding, dendritic effect-driven affinity to tandem-type galectins, especially Gal-9. In the enzyme-linked immunosorbent assay, the affinity of the third-generation multivalent dendritic ligand bearing 32 lactose units to Gal-9 reached nanomolar values (IC50 = 970 nM), being a 1400-fold more effective inhibitor than monovalent lactose for this protein. This demonstrates a game-changing impact of multivalent presentation on the inhibitory effect of a ligand as simple as lactose. Moreover, using DLS hydrodynamic diameter measurements, we correlated the increased affinity of the glycodendrimer ligands to Gal-3 and Gal-8 but especially to Gal-9 with the formation of relatively uniform and stable galectin/Lac-CS-DDM aggregates.
Collapse
Affiliation(s)
- Monika Müllerová
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Michaela Hovorková
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Táňa Závodná
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Červenková Št́astná
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Alena Krupková
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Vojtěch Hamala
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Kateřina Nováková
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jan Topinka
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Tomáš Strašák
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| |
Collapse
|
4
|
Vlachová M, Tran VN, Červený J, Dolníček F, Petrásková L, Pelantová H, Kundrát O, Cvačka J, Bosáková Z, Křen V, Lhoták P, Viktorová J, Bojarová P. Galectin-targeting glycocalix[4]arenes can enter the cells. Chem Commun (Camb) 2023; 59:10404-10407. [PMID: 37551910 DOI: 10.1039/d3cc02905k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Elevated levels of galectin-3 are associated with tumorigenesis. Its inhibition with high-affinity carbohydrate ligands opens new therapeutic routes. Targeting of intracellular galectin-3 is challenging for polar inhibitors like carbohydrates. We demonstrate the potential of novel biomedical research tools, glycocalix[4]arenes, to enter epithelial cells, which may allow their interaction with galectin-3.
Collapse
Affiliation(s)
- Miluše Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Praha 4, Czech Republic.
| | - Van Nguyen Tran
- University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Praha 4, Czech Republic.
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Praha 2, Czech Republic
| | - František Dolníček
- University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Praha 4, Czech Republic.
| | - Helena Pelantová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Praha 4, Czech Republic.
| | - Ondřej Kundrát
- University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Praha 6, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Praha 2, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Praha 4, Czech Republic.
| | - Pavel Lhoták
- University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Jitka Viktorová
- University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Praha 4, Czech Republic.
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-27201 Kladno, Czech Republic
| |
Collapse
|
5
|
Lete M, Hoffmann M, Schomann N, Martínez-Castillo A, Peccati F, Konietzny PB, Delgado S, Snyder NL, Jiménez-Oses G, Abrescia NGA, Ardá A, Hartmann L, Jiménez-Barbero J. Molecular Recognition of Glycan-Bearing Glycomacromolecules Presented at Membrane Surfaces by Lectins: An NMR View. ACS OMEGA 2023; 8:16883-16895. [PMID: 37214724 PMCID: PMC10193412 DOI: 10.1021/acsomega.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.
Collapse
Affiliation(s)
- Marta
G. Lete
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Miriam Hoffmann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Nils Schomann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Ane Martínez-Castillo
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Francesca Peccati
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Patrick B. Konietzny
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sandra Delgado
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Nicole L. Snyder
- Department
of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Gonzalo Jiménez-Oses
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
| | - Nicola G. A. Abrescia
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas, Instituto de Salud Carlos
III, Madrid 28029, Spain
| | - Ana Ardá
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
| | - Laura Hartmann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| |
Collapse
|
6
|
Slámová K, Červený J, Mészáros Z, Friede T, Vrbata D, Křen V, Bojarová P. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules 2023; 28:molecules28104039. [PMID: 37241779 DOI: 10.3390/molecules28104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Galectins are carbohydrate-binding lectins that modulate the proliferation, apoptosis, adhesion, or migration of cells by cross-linking glycans on cell membranes or extracellular matrix components. Galectin-4 (Gal-4) is a tandem-repeat-type galectin expressed mainly in the epithelial cells of the gastrointestinal tract. It consists of an N- and a C-terminal carbohydrate-binding domain (CRD), each with distinct binding affinities, interconnected with a peptide linker. Compared to other more abundant galectins, the knowledge of the pathophysiology of Gal-4 is sparse. Its altered expression in tumor tissue is associated with, for example, colon, colorectal, and liver cancers, and it increases in tumor progression, and metastasis. There is also very limited information on the preferences of Gal-4 for its carbohydrate ligands, particularly with respect to Gal-4 subunits. Similarly, there is virtually no information on the interaction of Gal-4 with multivalent ligands. This work shows the expression and purification of Gal-4 and its subunits and presents a structure-affinity relationship study with a library of oligosaccharide ligands. Furthermore, the influence of multivalency is demonstrated in the interaction with a model lactosyl-decorated synthetic glycoconjugate. The present data may be used in biomedical research for the design of efficient ligands of Gal-4 with diagnostic or therapeutic potential.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, 160 00 Prague 6, Czech Republic
| | - Tereza Friede
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| |
Collapse
|
7
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
8
|
Hovorková M, Červený J, Bumba L, Pelantová H, Cvačka J, Křen V, Renaudet O, Goyard D, Bojarová P. Advanced high-affinity glycoconjugate ligands of galectins. Bioorg Chem 2023; 131:106279. [PMID: 36446202 DOI: 10.1016/j.bioorg.2022.106279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
Galectins are proteins of the family of human lectins. By binding terminal galactose units of cell surface glycans, they moderate biological and pathological processes such as cell signaling, cell adhesion, apoptosis, fibrosis, carcinogenesis, and metabolic disorders. The binding of monovalent glycans to galectins is usually relatively weak. Therefore, the presentation of carbohydrate ligands on multivalent scaffolds can efficiently increase and/or discriminate the affinity of the glycoconjugate to different galectins. A library of glycoclusters and glycodendrimers with various structural presentations of the common functionalized N-acetyllactosamine ligand was prepared to evaluate how the mode of presentation affects the affinity and selectivity to the two most abundant galectins, galectin-1 (Gal-1) and galectin-3 (Gal-3). In addition, the effect of a one- to two-unit carbohydrate spacer on the affinity of the glycoconjugates was determined. A new design of the biolayer interferometry (BLI) method with specific AVI-tagged constructs was used to determine the affinity to galectins, and compared with the gold-standard method of isothermal titration calorimetry (ITC). This study reveals new routes to low nanomolar glycoconjugate inhibitors of galectins of interest for biomedical research.
Collapse
Affiliation(s)
- Michaela Hovorková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843 Prague 2, Czech Republic
| | - Jakub Červený
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám, 2, CZ-166 10 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Olivier Renaudet
- Department of Molecular Chemistry, University Grenoble-Alpes, 621, Avenue Centrale, F-38400 Saint Martin-d'Hères, France
| | - David Goyard
- Department of Molecular Chemistry, University Grenoble-Alpes, 621, Avenue Centrale, F-38400 Saint Martin-d'Hères, France.
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic.
| |
Collapse
|
9
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
10
|
Lau LS, Mohammed NBB, Dimitroff CJ. Decoding Strategies to Evade Immunoregulators Galectin-1, -3, and -9 and Their Ligands as Novel Therapeutics in Cancer Immunotherapy. Int J Mol Sci 2022; 23:15554. [PMID: 36555198 PMCID: PMC9778980 DOI: 10.3390/ijms232415554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Galectins are a family of ß-galactoside-binding proteins that play a variety of roles in normal physiology. In cancer, their expression levels are typically elevated and often associated with poor prognosis. They are known to fuel a variety of cancer progression pathways through their glycan-binding interactions with cancer, stromal, and immune cell surfaces. Of the 15 galectins in mammals, galectin (Gal)-1, -3, and -9 are particularly notable for their critical roles in tumor immune escape. While these galectins play integral roles in promoting cancer progression, they are also instrumental in regulating the survival, differentiation, and function of anti-tumor T cells that compromise anti-tumor immunity and weaken novel immunotherapies. To this end, there has been a surge in the development of new strategies to inhibit their pro-malignancy characteristics, particularly in reversing tumor immunosuppression through galectin-glycan ligand-targeting methods. This review examines some new approaches to evading Gal-1, -3, and -9-ligand interactions to interfere with their tumor-promoting and immunoregulating activities. Whether using neutralizing antibodies, synthetic peptides, glyco-metabolic modifiers, competitive inhibitors, vaccines, gene editing, exo-glycan modification, or chimeric antigen receptor (CAR)-T cells, these methods offer new hope of synergizing their inhibitory effects with current immunotherapeutic methods and yielding highly effective, durable responses.
Collapse
Affiliation(s)
- Lee Seng Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Norhan B. B. Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Charles J. Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
The Synthesis and Preclinical Investigation of Lactosamine-Based Radiopharmaceuticals for the Detection of Galectin-3-Expressing Melanoma Cells. Pharmaceutics 2022; 14:pharmaceutics14112504. [PMID: 36432695 PMCID: PMC9695418 DOI: 10.3390/pharmaceutics14112504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Given that galectin-3 (Gal-3) is a β-galactoside-binding lectin promoting tumor growth and metastatis, it could be a valuable target for the treatment of Gal-3-expressing neoplasms. An aromatic group introduced to the C-3′ position of lactosamine increased its affinity for Gal-3. Herein, we aimed at developing a radiopharmaceutical for the detection of Gal-3 positive malignancies. To enhance tumor specificity, a heterodimeric radiotracer capable of binding to both Gal-3 and αvβ3 integrin was also synthetized. Arginine-glycine-asparagine (RGD) peptide is the ligand of angiogenesis- and metastasis-associated αvβ3 integrin. Following the synthesis of the chelator-conjugated (2-naphthyl)methylated lactosamine, the obtained compound was applied as a precursor for radiolabeling and was conjugated to the RGD peptide by click reaction as well. Both synthetized precursors were radiolabeled with 68Ga, resulting in high labeling yield (>97). The biological studies were carried out using B16F10 melanoma tumor-bearing C57BL6 mice. High tumor accumulation of both labeled lactosamine derivatives—detected by in vivo PET and ex vivo biodistribution studies—indicated their potential for melanoma detection. However, the heterodimer radiotracer showed high hepatic uptake, while low liver accumulation characterized chelator-conjugated lactosamine, resulting in PET images with excellent contrast. Therefore, this novel carbohydrate-based radiotracer is suitable for the highly selective determination of Gal-3-expressing melanoma cells.
Collapse
|
12
|
Niang DGM, Gaba FM, Diouf A, Hendricks J, Diallo RN, Niang MDS, Mbengue B, Dieye A. Galectin-3 as a biomarker in breast neoplasms: Mechanisms and applications in patient care. J Leukoc Biol 2022; 112:1041-1052. [PMID: 36125083 DOI: 10.1002/jlb.5mr0822-673r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Galectin-3 is a member of the lectin family encoded by the LGALS3 gene on chromosome 14. It is secreted by a wide range of immune cells and mammary tumor cells. Through its activity on the tumor microenvironment, in particular on tumor-infiltrating leukocytes, galectin-3 improves the proliferation, survival, and colonizing ability of mammary neoplastic cells. Consequently, galectin-3 expression in the tumor microenvironment could worsen therapeutic outcomes of breast neoplasms and become a biomarker and a therapeutic target in combined immunotherapy in breast neoplasms. There is a limited amount of information that is available on galectin-3 in breast cancer in Africa. In this review, we analyze how galectin-3 influences the tumor microenvironment and its potential as a biomarker and therapeutic target in breast neoplasms. We aim to emphasize the significance of investigating galectin-3 in breast neoplasms in Africa based on the results of studies conducted elsewhere.
Collapse
Affiliation(s)
- Doudou Georges Massar Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Folly Mawulolo Gaba
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Adame Diouf
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Jacobus Hendricks
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, Limpopo province, South Africa
| | - Rokhaya Ndiaye Diallo
- Division of Human Genetics, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Maguette Deme Sylla Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Babacar Mbengue
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Alioune Dieye
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
13
|
Ou C, Li C, Feng C, Tong X, Vasta GR, Wang LX. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorg Med Chem 2022; 72:116974. [PMID: 36108470 PMCID: PMC10349921 DOI: 10.1016/j.bmc.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Human galectin 3 (Gal-3) has been implicated to play important roles in different biological recognition processes such as tumor growth and cancer metastasis. High-affinity Gal-3 ligands are desirable for functional studies and as inhibitors for potential therapeutic development. We report here a facile synthesis of β-cyclodextrin (CD)-based Tn and TF antigen-containing multivalent ligands via a click reaction. Binding studies indicated that the synthetic multivalent glycan ligands demonstrated a clear clustering effect in binding to human Gal-3, with up to 153-fold enhanced relative affinity in comparison with the monomeric glycan ligand. The GalNAc (Tn antigen) containing heptavalent ligand showed the highest affinity for human Gal-3 among the synthetic ligands tested, with an EC50 of 1.4 μM in binding to human Gal-3. A cell-based assay revealed that the synthetic CD-based multivalent ligands could efficiently inhibit Gal-3 binding to human airway epithelial cells, with an inhibitory capacity consistent with their binding affinity measured by SPR. The synthetic cyclodextrin-based ligands described in this study should be valuable for functional studies of human Gal-3 and potentially for therapeutic applications.
Collapse
Affiliation(s)
- Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
14
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
15
|
Vrbata D, Filipová M, Tavares MR, Červený J, Vlachová M, Šírová M, Pelantová H, Petrásková L, Bumba L, Konefał R, Etrych T, Křen V, Chytil P, Bojarová P. Glycopolymers Decorated with 3- O-Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. J Med Chem 2022; 65:3866-3878. [PMID: 35157467 DOI: 10.1021/acs.jmedchem.1c01625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., β-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.
Collapse
Affiliation(s)
- David Vrbata
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Marina R Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, CZ-128 43 Prague 2, Czech Republic
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic
| |
Collapse
|
16
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
17
|
Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022; 23:543-575. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jonas Becker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
18
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
19
|
Bertuzzi S, Gimeno A, Martinez-Castillo A, Lete MG, Delgado S, Airoldi C, Rodrigues Tavares M, Bláhová M, Chytil P, Křen V, Abrescia NGA, Ardá A, Bojarová P, Jiménez-Barbero J. Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers. Int J Mol Sci 2021; 22:ijms22116000. [PMID: 34206141 PMCID: PMC8199549 DOI: 10.3390/ijms22116000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/02/2023] Open
Abstract
The interaction of multi-LacNAc (Galβ1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.
Collapse
Affiliation(s)
- Sara Bertuzzi
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
| | - Ane Martinez-Castillo
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
| | - Marta G. Lete
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
| | - Cristina Airoldi
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, 16206 Prague, Czech Republic; (M.R.T.); (M.B.); (P.C.)
| | - Markéta Bláhová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, 16206 Prague, Czech Republic; (M.R.T.); (M.B.); (P.C.)
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, 16206 Prague, Czech Republic; (M.R.T.); (M.B.); (P.C.)
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Nicola G. A. Abrescia
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic;
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná, 27201 Kladno, Czech Republic
- Correspondence: (P.B.); (J.J.-B.)
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162 Derio, Bizkaia, Spain; (S.B.); (A.G.); (A.M.-C.); (M.G.L.); (S.D.); (N.G.A.A.); (A.A.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Correspondence: (P.B.); (J.J.-B.)
| |
Collapse
|