1
|
Fischer F, Temml V, Schuster D. Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules 2025; 30:2183. [PMID: 40430355 PMCID: PMC12114199 DOI: 10.3390/molecules30102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide residues in food and water may affect surrounding communities. One of the lesser investigated issues is immunotoxicity, mostly because the chronic effects of compound exposure are very complex to study. As a case study, this work utilized pharmacophore modeling and virtual screening to identify pesticides that may inhibit Janus kinases (JAK1, JAK2, JAK3) and tyrosine kinase 2 (TYK2), which are pivotal in immune response regulation, and are associated with cancer development and increased infection susceptibility. We identified 64 potential pesticide candidates, 22 of which have previously been detected in the human body, as confirmed by the Human Metabolome Database. These results underscore the critical need for further research into potential immunotoxic and chronic impacts of the respective pesticides on human health.
Collapse
Affiliation(s)
| | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Research and Innovation Center for Regenerative Medicine and Novel Therapies, Paracelsus Medical University, 5020 Salzburg, Austria; (F.F.); (V.T.)
| |
Collapse
|
2
|
Zhang RH, Chen T, Xiong QQ, Wang S, Chen GQ, Zhang WL, Yuan HF, Zhao YL, Liu T, Huang Y, Zhou M, Yang CL, Liao SG, Li YJ. Discovery of a potent anticancer agent against pancreatic ductal adenocarcinoma targeting FAK with DFG-out state and JAK/Aurora kinases. Eur J Med Chem 2025; 282:117059. [PMID: 39577230 DOI: 10.1016/j.ejmech.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer because of the difficulty in diagnosis and its resistance to chemotherapy. Focal adhesion kinase (FAK) is found overexpressed in PDAC, and targeting FAK has been proved to impede the progress of PDAC. However, most of FAK inhibitors were reported to bind with FAK in a DFG-in conformation, leading to a limited anti-tumor effect in clinical studies. Herein, to develop FAK inhibitors targeting the inactive DFG-out conformation, a series of large aromatic rings were selected to improve the interaction with Phe565 of the DFG motif. Compound 26 was designed to effectively inhibit FAK and the proliferation of PANC-1 cells with IC50 of 50.94 nM and 0.15 μM, respectively. Besides, compound 26 was proved to strongly suppress the proliferation, colony formation, migration, and invasion in FAK-overexpressing PDAC cells. This inhibitor was confirmed to induce the apoptosis and G2/M arrest in PANC-1 cells through the suppression of FAK/PI3K/Akt signal pathway. Meanwhile, compound 26 was found to simultaneously inhibit FAK with DFG-out conformation and JAK3/Aurora B (IC50 of 9.99 nM and 0.49 nM, respectively). In vivo, compound 26 effectively inhibited the tumorigenesis and metastasis of PDAC with desirable biosafety. Overall, these results suggested that compound 26 was a promising candidate for the treatment of PDAC.
Collapse
Affiliation(s)
- Rong-Hong Zhang
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Ting Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Qian-Qian Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Guo-Qi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Hong-Fei Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| | - Cheng-Li Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| |
Collapse
|
3
|
Zeid MM, El-Badry OM, El-Meligie S, Hassan RA. Pyrimidine: A Privileged Scaffold for the Development of Anticancer Agents as Protein Kinase Inhibitors (Recent Update). Curr Pharm Des 2025; 31:1100-1129. [PMID: 39773052 DOI: 10.2174/0113816128346900241111115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
The pyrimidine nucleus is a fundamental component of human DNA and RNA, as well as the backbone of many therapeutic agents. Its significance in medicinal chemistry is well-established, with pyrimidine derivatives receiving considerable attention due to their potent anticancer properties across various cancer cell lines. Numerous derivatives have been synthesized, drawing structural inspiration from known anticancer agents like dihydropyrimidine compounds, which include the active cores of drugs such as 5-fluorouracil and monastrol, both of which have demonstrated strong anticancer efficacy. Additionally, various pyrimidine derivatives have been developed through different synthetic pathways, exhibiting promising anticancer potential. In response to the growing need for effective cancer treatments, recent efforts have focused on synthesizing and exploring novel pyrimidine derivatives with improved efficacy and specificity. This review aims to highlight the versatility of pyrimidine-based compounds in cancer therapy, emphasizing not only their potency and binding affinity but also their optimal interaction with diverse biological targets. The goal is to facilitate the design of new pyrimidine derivatives with enhanced anticancer potential, providing effective solutions for the treatment of various cancer types.
Collapse
Affiliation(s)
- Mai M Zeid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Osama M El-Badry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Salwa El-Meligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
5
|
Wang X, Li N, Liu YH, Wu J, Liu QG, Niu JB, Xu Y, Huang CZ, Zhang SY, Song J. Targeting focal adhesion kinase (FAK) in cancer therapy: A recent update on inhibitors and PROTAC degraders. Eur J Med Chem 2024; 276:116678. [PMID: 39029337 DOI: 10.1016/j.ejmech.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-He Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Zheng Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Ye YX, Cao YY, Xu LS, Wang HC, Liu XH, Zhu HL. FAK inhibitors in cancer, a patent review - an update on progress. Expert Opin Ther Pat 2024; 34:593-610. [PMID: 38946486 DOI: 10.1080/13543776.2024.2368742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
| | - Yu-Yao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Li-Sheng Xu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| |
Collapse
|
7
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
8
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
9
|
Liu Y, Kong LJ, Li N, Liu YH, Jia MQ, Liu QG, Zhang SY, Song J. Design, synthesis and biological evaluation of novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors of FAK with potent anti-gastric cancer activities. Bioorg Chem 2023; 141:106895. [PMID: 37797456 DOI: 10.1016/j.bioorg.2023.106895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
In this study, twenty-one novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors targeting FAK were designed and synthesized based on the structure of TAE-226, and the inhibitory effects of these compounds on both the FAK enzyme and three cancer cell lines (MGC-803, HCT-116, and KYSE30) were investigated. Among them, compound 12s displayed potent inhibitory potency on FAK (IC50 = 47 nM), and demonstrated more significant antiproliferative activities in MGC-803, HCT-116 and KYSE30 cells (IC50 values were 0.24, 0.45 and 0.44 μM, respectively) compared to TAE-226. Furthermore, compound 12s significantly inhibited FAK activation leading to the negative regulation of FAK-related signaling pathways such as AKT/mTOR and MAPK signaling pathways. Molecular docking study suggested that compound 12s could well occupy the ATP-binding pocket site of FAK similar to TAE-226. In addition, compound 12s also efficiently inhibited the proliferation, induced apoptosis and cellular senescence in MGC-803 cells. In conclusion, compound 12s emerges a potent FAK inhibitor that could exert potent inhibitory activity against gastric cancer cells.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Jun Kong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Liaocheng Vocational and Technical College, Liaocheng 252000, China
| | - Na Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mei-Qi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Ge Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Long Z, Zuo Y, Li R, Le Y, Dong Y, Yan L. Design, synthesis and biological evaluation of 4-arylamino-pyrimidine derivatives as focal adhesion kinase inhibitors. Bioorg Chem 2023; 140:106792. [PMID: 37633129 DOI: 10.1016/j.bioorg.2023.106792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
A novel series of 4-arylamino-pyrimidine derivatives were designed and synthesized as focal adhesion kinase (FAK) inhibitors under the strategy of structure-based drug design. Most compounds performed excellent anti-proliferative activity against U87-MG cells. Especially, compounds 8d and 9b revealed the highest activity with IC50 values of 0.975 μM and 1.033 μM, which was much potent than the positive control TAE-226 (IC50 = 2.659 μM). On the other hand, the total 27 compounds exhibited low inhibition against human normal 2BS cells. Moreover, compounds 8d and 9b showed outstanding activity against FAK with IC50 values of 0.2438 nM and 0.2691 nM, which was very close to TAE-226 (IC50 = 0.1390 nM). Further studies proved that compounds 8d and 9b could induce U87-MG cell early apoptosis and arrest the cell at G2/M phase. The action mechanism indicated that they could significantly inhibit U87-MG cell clone formation, cell migration, and FAK phosphorylation. Molecular docking and molecular dynamics simulation investigations suggested that compounds 8d and 9b could firmly occupy the ATP binding site of FAK. These findings supported the further researches of compounds 8d and 9b as FAK inhibitors for antitumor drug discovery.
Collapse
Affiliation(s)
- Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang 550025, China.
| |
Collapse
|
11
|
Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur J Med Chem 2023; 250:115192. [PMID: 36801517 DOI: 10.1016/j.ejmech.2023.115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
To search for novel medicines for intervention of triple-negative breast cancer (TNBC), a series of phenylsulfonyl furoxan-based 2,4-diaminopyrimidine derivatives (8a-t) were designed and synthesized based on blocking FAK-mediated signaling pathways through both kinase-dependent and -independent manners. The most active compound 8f not only significantly inhibited FAK kinase activity (IC50 = 27.44 nM), displayed potent inhibitory effects on the proliferation (IC50 = 0.126 μM), invasion and migration of MDA-MB-231 cells, superior to the most widely studied FAK inhibitor, TAE226, bearing 2,4-diaminopyrimidine, but also released high levels of NO, contributing to blockage of FAK mediated-signaling pathways by upregulating of p53 as well as suppressing the Y397 phosphorylation and its downstream effectors, including p-Akt, MMP-2, and MMP-9 via kinase-independent manner, leading to apoptosis induction and decrease of FAs and SFs in TNBC cells. Importantly, 8f inhibited the lung metastasis of TNBC in vivo. Together, 8f may serve as a promising candidate for the treatment of metastatic TNBC.
Collapse
|
12
|
Lian G, Hu K, Zhou M, Liu Y, Jin G. Design and bioactivity of Eudragit® encapsulated pH-Sensitive enteric/gastric soluble fluorescent agent. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
13
|
Hassan AY, Abou-Amra ES, El-Sebaey SA. Design and Synthesis of New Series of Chiral Pyrimidine and Purine analogs as COX-2 Inhibitors: Anticancer Screening, Molecular Modelling, and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Shi M, Chen T, Wei S, Zhao C, Zhang X, Li X, Tang X, Liu Y, Yang Z, Chen L. Molecular Docking, Molecular Dynamics Simulations, and Free Energy Calculation Insights into the Binding Mechanism between VS-4718 and Focal Adhesion Kinase. ACS OMEGA 2022; 7:32442-32456. [PMID: 36119979 PMCID: PMC9476166 DOI: 10.1021/acsomega.2c03951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 05/17/2023]
Abstract
Focal adhesion kinase (FAK) is a 125 kDa nonreceptor tyrosine kinase that plays an important role in many carcinomas. Thus, the targeting of FAK by small molecules is considered to be promising for cancer therapy. Some FAK inhibitors have been reported as potential anticancer drugs and have entered into clinical development; for example, VS-4718 is currently undergoing clinical trials. However, the lack of crystal structural data for the binding of VS-4718 with FAK has hindered the optimization of this anticancer agent. In this work, the VS-4718/FAK interaction model was obtained by molecular docking and molecular dynamics simulations. The binding free energies of VS-4718/FAK were also calculated using the molecular mechanics generalized Born surface area method. It was found that the aminopyrimidine group formed hydrogen bonds with the C502 residue of the hinge loop, while the D564 residue of the T-loop interacted with the amide group. In addition, I428, A452, V484, M499, G505, and L553 residues formed hydrophobic interactions with VS-4718. The obtained results therefore provide an improved understanding of the interaction between human FAK and VS-4718. Based on the obtained binding mechanism, 47 novel compounds were designed to target the adenosine 5'-triphosphate-binding pocket of human FAK, and ensemble docking was performed to assess the effects of these modifications on the inhibitor binding affinity. This work is also expected to provide additional insights into potential future target design strategies based on VS-4718.
Collapse
Affiliation(s)
- Mingsong Shi
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Chen
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Siping Wei
- Key
Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
- Department
of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chenyu Zhao
- West
China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhang
- West
China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinghui Li
- West
China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinyi Tang
- West
China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Liu
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhuang Yang
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lijuan Chen
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
15
|
Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|
17
|
Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The Development of FAK Inhibitors: A Five-Year Update. Int J Mol Sci 2022; 23:ijms23126381. [PMID: 35742823 PMCID: PMC9223874 DOI: 10.3390/ijms23126381] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.
Collapse
|
18
|
Qin Z, Ma Y, Li F. Construction of a Pyrimidine Framework through [3 + 2 + 1] Annulation of Amidines, Ketones, and N, N-Dimethylaminoethanol as One Carbon Donor. J Org Chem 2021; 86:13734-13743. [PMID: 34541847 DOI: 10.1021/acs.joc.1c01847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient, facile, and eco-friendly synthesis of pyrimidine derivatives has been developed. It involves a [3 + 2 + 1] three-component annulation of amidines, ketones, and one carbon source. N,N-Dimethylaminoethanol is oxidized through C(sp3)-H activation to provide the carbon donor. One C-C and two C-N bonds are formed during the oxidative annulation process. The reaction shows good tolerance to many important functional groups in air, making this methodology a highly versatile alternative, and significant improvement to the existing methods for structuring a pyrimidine framework, especially 4-aliphatic pyrimidines.
Collapse
Affiliation(s)
- Zemin Qin
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Fanzhu Li
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|