1
|
Tu X, Jiang B, Fang H, Qiao Y, Miao Z. Syntheses of Phosphonylated Pyrido-Dihydrofurans by Regioselective 5- Exo- dig Addition to Carbon-Carbon Triple Bond Catalyzed by AgNO 3. J Org Chem 2024; 89:13876-13885. [PMID: 39287593 DOI: 10.1021/acs.joc.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The tandem nucleophilic addition-cyclization reaction of o-alkynylpyridinecarbaldehyde 1 with dialkyl phosphites 2 took place very smoothly in the presence of AgNO3 under base conditions in DCE at 50 °C. In all cases, the reaction proceeded in a regioselective manner leading to the 5-exo-dig phosphonylated pyrido-dihydrofurans 3 in moderate to good yields.
Collapse
Affiliation(s)
- Xingyu Tu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Bo Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Hongming Fang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Yiyang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
- Department of Ecological and Resources Engineering, Fujian Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, China
| |
Collapse
|
2
|
Cai N, Gao X, Li W, Yang L, Zhao J, Qu J, Zhou Y. Novel trifluoromethyl ketone derivatives as oral cPLA 2/COX-2 dual inhibitors for resolution of inflammation in rheumatoid arthritis. Bioorg Chem 2024; 148:107453. [PMID: 38761708 DOI: 10.1016/j.bioorg.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 μM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
3
|
Du J, Liu P, Zhu Y, Wang G, Xing S, Liu T, Xia J, Dong S, Lv N, Li Z. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation. Eur J Med Chem 2023; 246:114956. [PMID: 36450214 DOI: 10.1016/j.ejmech.2022.114956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Herein, two series of tryptanthrin derivatives with benzenesulfonamide substituents were designed and synthesized to discover novel anti-inflammatory agents. The anti-inflammatory activities of all derivatives were screened by evaluating their inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells. Among them, compound 8j exhibited the best NO inhibitory activity (IC50 = 1.25 ± 0.21 μM), with no obvious toxicity. Further evaluation showed that 8j could also significantly reduce the levels of pro-inflammatory cytokines interleukin-1β (IL-1β, IC50 = 8.48 ± 0.23 μM) and tumor necrosis factor-α (TNF-α, IC50 = 11.53 ± 0.35 μM) and downregulate the LPS-induced expression of iNOS and COX-2. Reverse docking of 8j suggested p38α as the molecular target, which is a well-known crucial player in the p38 MAPK signaling pathway that controls the transcription of pro-inflammatory mediators. Cellular thermal shift assay showed that 8j efficiently stabilized p38α in LPS-treated RAW264.7 cells. Western blot showed that inflammatory response was inhibited by 8j through inhibiting the phosphorylation of p38α and MK2 in the p38 MAPK signaling pathway. Finally, In vivo studies showed that 8j could significantly ameliorate the degree of foot swelling and knee joint pathology in adjuvant-induced arthritis (AIA) rats and reduce levels of TNF-α and IL-1β in serum, achieving the effect of protecting synovial tissue and ameliorating arthritis. These findings suggested that 8j may be a promising compound for further development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Yanan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tongtong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Lv
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, Martinez-Rachadell L, Fernandez AM, Esparza J, Vega M, Nuñez A, Aleman IT. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 2022; 44:2243-2257. [PMID: 35604612 DOI: 10.1007/s11357-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jansen Fernandes
- Cajal Institute (CSIC), Madrid, Spain.,Universidade Federal São Paulo, São Paulo, Brazil
| | | | | | | | - Kentaro Suda
- Cajal Institute (CSIC), Madrid, Spain.,Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain. .,IKERBASQUE Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
6
|
Mu R, Zhou Y, Chen L, Wei H, Yu J, Gou W, Ye C, Hou W, Li Y, Zhu L. Discovery of novel triazole compounds as selective IL-1β releasement inhibitors. Bioorg Med Chem Lett 2021; 53:128415. [PMID: 34662706 DOI: 10.1016/j.bmcl.2021.128415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Inflammation and immunity are closely related to the occurrence and development of a variety of immune diseases. Although IL-1β has been identified as a key cytokine in many immune diseases, safe and specific small molecular IL-1β releasement inhibitors are still scarce and urgently required in clinic. The investigation prospect of triazoleis limited by its complicated pharmacological effect which exhibited inferior effects on IL-1β and TNF-α. Herein, 36 novel derivatives were designed and synthesized, and nearly half of the derivatives exhibited much better selectivity on IL-1β releasement inhibition as well as keep similar inhibitory activities to lead compound. In 20 μM, compound 19 exhibited IL-1β releasement inhibitory activity (IC50 = 5.489 μM) which closed to the original compound, and 4.5-fold superior selectivity (SI = 4.71) to the lead compound (SI = 0.82). A probable SAR model of triazole derivatives for IL-1β releasement inhibition and selectivity was also proposed, which might promote the discovery of more effective and specific IL-1β releasement inhibitors in the future.
Collapse
Affiliation(s)
- Ruixu Mu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yongting Zhou
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100100, China
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Huiqiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Jingcheng Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Caiying Ye
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100100, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Lei Zhu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100100, China.
| |
Collapse
|