1
|
Wang Q, Fang P, Zhao J, Huang X, Shen X, Wang F, Liu ZQ. Metal-Free Electrochemical C─H Chlorination of Terminal Alkanes. Angew Chem Int Ed Engl 2025; 64:e202504478. [PMID: 40074705 DOI: 10.1002/anie.202504478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Although research on the activation of C─H bonds in alkanes has been ongoing for decades, there are still few strategies that are both highly selective and suitable for industrial production. Herein, we report a highly selective method for the chlorination of terminal C─H bonds in alkanes by combining electrochemistry and organocatalysis. The specific cavity size of organic molecular catalysts ensures high regioselectivity, while the use of inexpensive and readily reusable graphite felt electrodes, a simple electrochemical device, and mild conditions enables the reaction to maintain good efficiency even when applied to kilogram-scale production.
Collapse
Affiliation(s)
- Qingxu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Pengkai Fang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xianting Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xiaoqian Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
2
|
Khamespanah F, Gerken JB, Mannel DS, Nagy S, Kimmich B, Stahl SS. Nickel-Catalyzed Hydrocarboxylation of Terminal Unactivated Alkenes: Formation of Branched Carboxylic Acids and Competing Catalyst Deactivation from CO 2 Reduction to CO. Organometallics 2024; 43:1502-1510. [PMID: 40351529 PMCID: PMC12061079 DOI: 10.1021/acs.organomet.4c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The reductive coupling of CO2 and alkenes represents a compelling strategy for the synthesis of carboxylic acids. In this study, we show that Ni(OAc)2 and 6,6'-Me2bpy (dmbpy) catalyzes hydrocarboxylation of terminal unactivated alkenes to afford the branched 2-methyl-substituted carboxylic acids. The nickel/dmbpy speciation in solution is elucidated through electrochemical and UV-visible and NMR spectroscopic methods. A catalyst deactivation process is identified, involving competitive reduction of CO2 to CO resulting in formation of an inactive Ni-CO complex. The Ni catalyst may be reactivated by oxidative treatment of the Ni-CO complex to release CO; however, the results highlight an important complication that can arise in Ni-catalyzed reductive coupling reactions with CO2.
Collapse
Affiliation(s)
- Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - James B. Gerken
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - David S. Mannel
- LyondellBasell, Houston Technology Center, 8280 Sheldon Road, Channelview, TX 77530, USA
| | - Sandor Nagy
- LyondellBasell, Houston Technology Center, 8280 Sheldon Road, Channelview, TX 77530, USA
| | - Barbara Kimmich
- LyondellBasell, Houston Technology Center, 8280 Sheldon Road, Channelview, TX 77530, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
3
|
Fujie M, Mizufune K, Nishimoto Y, Yasuda M. 1-Fluoro-1-sulfonyloxylation of Alkenes by Sterically and Electronically Tuned Hypervalent Iodine: Regression Analysis toward 1,1-Heterodifunctionalization. Org Lett 2023; 25:766-770. [PMID: 36710445 DOI: 10.1021/acs.orglett.2c04235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the heterodifunctionalization of alkenes, 1,1-regioselectivity remains elusive in sharp contrast to 1,2-regioselectivity. Herein, the 1-fluoro-1-sulfonyloxylation of styrenes with Bu4NBF4 and sulfonic acids using a hypervalent iodine ArI(OAc)2 is reported. Regression analysis of substituents on ArI(OAc)2 suggested that their electron-withdrawing ability and steric factor influence the 1,1-heterodifunctionalization. We designed o-{2,4-(CF3)2C6H3}- and p-NO2-substituted ArI(OAc)2 by the regression analysis to achieve high selectivity.
Collapse
Affiliation(s)
- Masaki Fujie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyohei Mizufune
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Zhao Q, Li B, Zhou X, Wang Z, Zhang FL, Li Y, Zhou X, Fu Y, Wang YF. Boryl Radicals Enabled a Three-Step Sequence to Assemble All-Carbon Quaternary Centers from Activated Trichloromethyl Groups. J Am Chem Soc 2022; 144:15275-15285. [PMID: 35950969 DOI: 10.1021/jacs.2c05798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction of diversely substituted all-carbon quaternary centers has been a longstanding challenge in organic synthesis. Methods that add three alkyl substituents to a simple C(sp3) atom rely heavily on lengthy multiple processes, which usually involve several preactivation steps. Here, we describe a straightforward three-step sequence that uses a range of readily accessible activated trichloromethyl groups as the carbon source, the three C-Cl bonds of which are selectively functionalized to introduce three alkyl chains. In each step, only a single C-Cl bond was cleaved with the choice of an appropriate Lewis base-boryl radical as the promoter. A vast range of diversely substituted all-carbon quaternary centers could be accessed directly from these activated CCl3 trichloromethyl groups or by simple derivatizations. The use of different alkene traps in each of the three steps enabled facile collections of a large library of products. The utility of this strategy was demonstrated by the synthesis of variants of two drug molecules, whose structures could be easily modulated by varying the alkene partner in each step. The results of kinetic and computational studies enabled the design of the three-step reaction and provided insights into the reaction mechanisms.
Collapse
Affiliation(s)
- Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Bin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhao Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Hao Y, Su C, Liu X, Sui H, Shi Y, Zhao L. Bioengineered microglia-targeted exosomes facilitate Aβ clearance via enhancing activity of microglial lysosome for promoting cognitive recovery in Alzheimer's disease. BIOMATERIALS ADVANCES 2022; 136:212770. [PMID: 35929330 DOI: 10.1016/j.bioadv.2022.212770] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Aggregation of amyloid in the form of senile plaques is currently considered to be one of the main mechanisms driving the development of Alzheimer's disease (AD). Therefore, targeting amyloid homeostasis is an important treatment strategy for AD. Microglia, as the main immune cells, contribute to endocytosis and clearance of amyloid beta (Aβ) via lysosome mediated degradation. As abnormal lysosomal function in microglia is associated with inefficient clearance of Aβ in AD, we designed bioengineered microglia-targeting exosomes to promote the targeted delivery of gemfibrozil (Gem) and restore the lysosomal activity of microglia in clearing Aβ aggregation. Our results suggested that mannose-modified exosomes laden with Gem (MExo-Gem) can not only bind with Aβ but also specifically target microglia through the interaction between Exo-delivered mannose and mannose receptors expressed in microglia, thus promoting Aβ entry into microglia. Exosomal Gem activated lysosomal activity and accelerated lysosome-mediated clearance of Aβ in microglia. Finally, MExo-Gem improved the learning and memory ability of AD model mice.
Collapse
Affiliation(s)
- Yunni Hao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xintong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Haijuan Sui
- Department of Pharmacology, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|