1
|
Konate S, Allangba KNPG, Fofana I, N’Guessan RK, Megnassan E, Miertus S, Frecer V. Improved Inhibitors Targeting the Thymidylate Kinase of Multidrug-Resistant Mycobacterium tuberculosis with Favorable Pharmacokinetics. Life (Basel) 2025; 15:173. [PMID: 40003582 PMCID: PMC11856008 DOI: 10.3390/life15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
This study aims to design improved inhibitors targeting the thymidylate kinase (TMK) of Mycobacterium tuberculosis (Mtb), the causative agent of infectious disease tuberculosis that is associated with high morbidity and mortality in developing countries. TMK is an essential enzyme for the synthesis of bacterial DNA. We have performed computer-aided molecular design of MtbTMK inhibitors by modification of the reference crystal structures of the lead micromolar inhibitor TKI1 1-(1-((4-(3-Chlorophenoxy)quinolin-2-yl)methyl)piperidin-4-yl)-5-methylpyrimidine-2,4(1H,3H)-dione bound to TMK of Mtb strain H37Rv (PDB entries: 5NRN and 5NR7) using the computational approach MM-PBSA. A QSAR model was prepared for a training set of 31 MtbTMK inhibitors with published inhibitory potencies (IC50exp) and showed a significant correlation between the calculated relative Gibbs free energies of the MtbTMK-TKIx complex formation and the observed potencies. This model was able to explain approximately 95% of the variation in the in vitro inhibition data and validated our molecular model of MtbTMK inhibition for the subsequent design of new TKI analogs. Furthermore, we have confirmed the predictive capacity of this complexation QSAR model by generating a 3D QSAR PH4 pharmacophore-based model. A satisfactory correlation was also obtained for the validation PH4 model of MtbTMK inhibition (R2 = 0.84). We have extended the hydrophobic m-chloro-phenoxyquinolin-2-yl group of TKI1 that can occupy the entry into the thymidine binding cleft of MtbTMK by alternative larger hydrophobic groups. Analysis of residue interactions at the enzyme binding site made it possible to select suitable building blocks to be used in the preparation of a virtual combinatorial library of 28,900 analogs of TKI1. Structural information derived from the complexation model and the PH4 pharmacophore guided the in silico screening of the library of analogs and led to the identification of new potential MtbTMK inhibitors that were predicted to be effective in the low nanomolar concentration range. The QSAR complexation model predicted an inhibitory concentration IC50pre of 9.5 nM for the best new virtual inhibitor candidate TKI 13_1, which represents a significant improvement in estimated inhibitory potency compared to TKI1. Finally, the stability of the MtbTMK-inhibitor complexes and the flexibility of the active conformation of the inhibitors were assessed by molecular dynamics for five top-ranking analogs. This computational study resulted in the discovery of new MtbTMK inhibitors with predicted enhanced inhibitory potencies, which also showed favorable predicted pharmacokinetic profiles.
Collapse
Affiliation(s)
- Souleymane Konate
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (S.K.); (E.M.)
| | - Koffi N’Guessan Placide Gabin Allangba
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (S.K.); (E.M.)
- Physics Pedagogical Unit, Laboratory of Environmental Science and Technology, University Jean Lorougnon Guédé, Daloa Bp 150, Côte d’Ivoire
- Department of Medical Physics, University of Trieste and International Centre for Theoretical Physics (ICTP), 34151 Trieste, Italy
| | - Issouf Fofana
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (S.K.); (E.M.)
| | - Raymond Kre N’Guessan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (S.K.); (E.M.)
| | - Eugene Megnassan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (S.K.); (E.M.)
- Laboratoire de Cristallographie-Physique Moléculaire, Université Félix Houphouët-Boigny, Abidjan 22, Côte d’Ivoire
- Laboratoire de Chimie Organique Structurale et Théorique, Université Félix Houphouët-Boigny, Abidjan 22, Côte d’Ivoire
- International Centre for Applied Research and Sustainable Technology, 84104 Bratislava, Slovakia
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Stanislav Miertus
- International Centre for Applied Research and Sustainable Technology, 84104 Bratislava, Slovakia
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Slovakia
| | - Vladimir Frecer
- International Centre for Applied Research and Sustainable Technology, 84104 Bratislava, Slovakia
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 83232 Bratislava, Slovakia
| |
Collapse
|
2
|
El-Shoukrofy MS, Atta A, Fahmy S, Sriram D, Shehat MG, Labouta IM, Mahran MA. Challenging the Biginelli scaffold to surpass the first line antitubercular drugs: Mycobacterium tuberculosis thymidine monophosphate kinase (TMPK mt) inhibition activity and molecular modelling studies. J Enzyme Inhib Med Chem 2024; 39:2386668. [PMID: 39258667 PMCID: PMC11391879 DOI: 10.1080/14756366.2024.2386668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
New Biginelli adducts were rationalised, via the introduction of selected anti-tubercular (TB) pharmacophores into the dihydropyrimidine (DHPM) ring of deoxythymidine monophosphate (dTMP), the natural substrate of Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt). Repurposing was one of the design rationale strategies for some selected mimics of the designed compounds. The anti-TB activity was screened against the Mtb H37Rv strain where 11a was superior to ethambutol (EMB), and was 9-fold more potent than pyrazinamide (PZA). Additionally, compounds 11b, 4a, 4b, 13a, 13b and 14a elicited higher anti-TB activity than PZA, showing better safety profiles than EMB against RAW 264.7 cells' growth. The in vitro TMPKmt inhibition assay released compounds 11a, 11b and 13b as the most potent inhibitors. Docking studies presumed the binding modes and molecular dynamics (MD) simulation revealed the dynamic stability of 11a-TMPKmt complex over 100 ns. In silico prediction of the chemo-informatics properties of the most active compounds was conducted.
Collapse
Affiliation(s)
- Mai S. El-Shoukrofy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salwa Fahmy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Dharmarajan Sriram
- Medicinal Chemistry Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science, Pilani, India
| | - Michael G. Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim M. Labouta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mona A. Mahran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Chikhale RV, Pawar SP, Kolpe MS, Shinde OD, Dahlous KA, Mohammad S, Patil PC, Bhowmick S. Identification of mycobacterial Thymidylate kinase inhibitors: a comprehensive pharmacophore, machine learning, molecular docking, and molecular dynamics simulation studies. Mol Divers 2024; 28:1947-1964. [PMID: 39152354 PMCID: PMC11449957 DOI: 10.1007/s11030-024-10967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Thymidylate kinase (TMK) is a pivotal enzyme in Mycobacterium tuberculosis (Mtb), crucial for phosphorylating thymidine monophosphate (dTMP) to thymidine diphosphate (dTDP), thereby playing a critical role in DNA biosynthesis. Dysregulation or inhibition of TMK activity disrupts DNA replication and cell division, making it an attractive target for anti-tuberculosis drug development. In this study, the statistically validated pharmacophore mode was developed from a set of known TMK inhibitors. Further, the robust pharmacophore was considered for screening the Enamine database. The chemical space was reduced through multiple molecular docking approaches, pharmacokinetics, and absolute binding energy estimation. Two different molecular docking algorithms favor the strong binding affinity of the proposed molecules towards TMK. Machine learning-based absolute binding energy also showed the potentiality of the proposed molecules. The binding interactions analysis exposed the strong binding affinity between the proposed molecules and active site amino residues of TMK. Several statistical parameters from all atoms MD simulation explained the stability between proposed molecules and TMK in the dynamic states. The MM-GBSA approach also found a strong binding affinity for each proposed molecule. Therefore, the proposed molecules might be crucial TMK inhibitors for managing Mtb inhibition subjected to in vitro/in vivo validations.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK.
| | - Surbhi Pravin Pawar
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Mahima Sudhir Kolpe
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
| | - Omkar Dilip Shinde
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
| |
Collapse
|
4
|
Zheng CX, Liao YT, Wang HX, Yang C, Li D, Shao LD. Synthesis of C3'-Foused Aryl/Penta-1,4-Dien-3-One/Amine Hybrids as HSP90C-Terminal Inhibitors. Chem Biodivers 2024; 21:e202400870. [PMID: 38842484 DOI: 10.1002/cbdv.202400870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
24 C3'-focused hybrids of aryl/penta-1,4-dien-3-one/amine (APDA) were designed and synthesized. Of these hybrids, 2 n demonstrated improved antiproliferative effects on HER2-positive breast cancer cells (SKBr3 and BT474) and triple-negative breast cancer (TNBC) cells (MDA-MB-231 and MDA-MB-468) with IC50 values ranging from 7.45 to 10.75 μM, but less toxicity to normal breast cells MCF-10A than the first generation of hybrid 1. Additionally, 2 n retained its ability to inhibit HSP90C-terminus, leading to the degradation of HSP90 client proteins HER2, EGFR, pAKT, AKT, and CDK4, without inducing a heat-shock response. Notably, 2 n also demonstrated improved thermostability compared to 1 and maintained in vitro metabolic stability in simulated intestinal fluid. These findings will provide a scientific basis for developing HSP90C-terminal inhibitors in the future.
Collapse
Affiliation(s)
- Chun-Xia Zheng
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500
| | - Yu-Ting Liao
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500
| | - Hua-Xiang Wang
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500
| | - Chen Yang
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500
| |
Collapse
|
5
|
Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem 2023; 246:114946. [PMID: 36459759 DOI: 10.1016/j.ejmech.2022.114946] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Small molecules with antitubercular activity containing the pyrimidine motif in their structure have gained more attention after three drugs, namely GSK 2556286 (GSK-286), TBA-7371 and SPR720, have entered clinical trials. This review provides an overview of recent advances in the hit-to-lead drug discovery studies of antitubercular pyrimidine-containing compounds with the aim to highlight their structural diversity. In the first part, the review discusses the pyrimidine compounds according to their targets, pinpointing the structure-activity relationships of each pyrimidine family. The second part of this review is concentrated on antitubercular pyrimidine derivatives with a yet unexplored or speculative target, dividing the compounds according to their structural types.
Collapse
Affiliation(s)
- Vladimir Finger
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Martin Kufa
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic.
| |
Collapse
|
6
|
Dhameliya TM, Devani AA, Patel KA, Shah KC. Comprehensive Coverage on Anti‐mycobacterial Endeavour Reported in 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202200921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aanal A. Devani
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Krupa A. Patel
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Kashvi C. Shah
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| |
Collapse
|