1
|
Suzuki S, Umezawa K, Furuie G, Kikuchi M, Nakamura DGM, Fukahori N, Kimura N, Yamakawa M, Niwa T, Umehara T, Hosoya T, Kii I. Temperature vaulting: A method for screening of slow- and tight-binding inhibitors that selectively target kinases in their non-native state. Eur J Med Chem 2025; 295:117789. [PMID: 40412300 DOI: 10.1016/j.ejmech.2025.117789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
A polypeptide folds into its protein tertiary structure in the native state through a folding intermediate in the non-native state. The transition between these states is thermodynamically driven. A folding intermediate of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) autophosphorylates intramolecularly, whereas DYRK1A in the native state no longer catalyzes this reaction. The alteration in substrate specificity suggests a conformational transition of DYRK1A during its folding process. Consistent with this hypothesis, we identified FINDY (1), which inhibits the intramolecular autophosphorylation but not the intermolecular phosphorylation, suggesting that DYRK1A in the non-native state possesses an alternative inhibitor-binding site. Meanwhile, it remains an issue that the methods for approaching the alternative binding site require an intricate assay tailored to the individual target. Here we show a method, designated as "temperature vaulting," for inhibitor screening that targets the non-native state. Transient heating of recombinant DYRK1A protein drove the reversible transition between the native state and the non-native state targeted by FINDY (1). At physiological temperature, FINDY (1) slowly bound to the DYRK1A protein. These results indicate that transient heating accelerates the slow-binding process by assisting the protein to overcome the high-energy barrier leading to the target non-native state. The energy barrier also slowed down the dissociation, resulting in tight binding between DYRK1A and FINDY (1). Structure-activity relationship revealed that both the methoxy group and the alkyne moiety underlie the selectivity of FINDY (1) toward DYRK1A in the non-native state. Furthermore, this study suggests that the dissociation rate underlies the inhibition selectivity of FINDY (1) between DYRK1A and its family kinase DYRK1B. This method could leverage conventional assays to identify slow- and tight-binding inhibitors.
Collapse
Affiliation(s)
- Sora Suzuki
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Gaku Furuie
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Masaki Kikuchi
- Department of Structural Biology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daichi G M Nakamura
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Nanae Fukahori
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Ninako Kimura
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Masato Yamakawa
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan; Chemical Bioscience Team, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan; Laboratory for Molecular Transformation Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan; Chemical Bioscience Team, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Isao Kii
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan.
| |
Collapse
|
2
|
Alam P, Arshad MF, Sharma P. Structural Dynamics and Network Pharmacology for the Discovery of Inhibitors Targeting DYRK1 A in Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04935-0. [PMID: 40261606 DOI: 10.1007/s12035-025-04935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Neurological disorders, including Down syndrome, Alzheimer's disease, and autism spectrum disorders, involve intricate disruptions in brain function and development. DYRK1A (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) has become an essential target in these diseases because it helps neurons grow, differentiate, and change shape. Overexpression of DYRK1A is connected to problems with neurodevelopment, memory loss, and tauopathies, which makes it an essential target for therapy. Therefore, inhibiting the DYRK1A protein aids in maintaining the normal brain molecular mechanism. Herein, we have identified three major natural compounds, ZINC000043552589, ZINC000001562130, and ZINC000059779788, as potential inhibitory candidates. These compounds exhibited a strong binding affinity with the DYRK1A protein during virtual screening and molecular docking. During the virtual screening analysis, the binding scores of these compounds were more than -11.0 kcal/mol. Further, hydrogen and hydrophobic interactions strengthen their binding with the DYRK1A protein. The MD simulation analysis also confirmed the structural dynamic stability of the compounds. Moreover, the total free binding energy calculated via the MM/GBSA method was found to be -54.06 kcal/mol for ZINC000043552589, -39.01 kcal/mol for ZINC000001562130 and -50.26 kcal/mol for ZINC000059779788. These values further confirm the binding affinity strength of the compounds with the target protein. DFT analysis revealed distinct HOMO-LUMO energy gaps and orbital distributions across the compounds, highlighting their varied electronic characteristics and charge-transfer potentials. Network pharmacology analysis further highlighted multiple potential gene targets for the selected compounds, providing insights into their broader therapeutic implications. This analysis suggests these natural compounds may modulate additional pathways relevant to neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohammed Faiz Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
3
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Aoyama M, Kimura N, Yamakawa M, Suzuki S, Umezawa K, Kii I. DnaK promotes autophosphorylation of DYRK1A and its family kinases in Escherichia coli-based cell-free protein expression. Biochem Biophys Res Commun 2023; 688:149220. [PMID: 37952278 DOI: 10.1016/j.bbrc.2023.149220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is one of the drug target kinases involved in neurological disorders. DYRK1A phosphorylates substrate proteins related to disease progression in an intermolecular manner. Meanwhile, DYRK1A intramolecularly phosphorylates its own residues on key segments during folding process, which is required for its activation and stabilization. To reproduce the autophosphorylation in vitro, DYRK1A was expressed in Escherichia coli-based cell-free protein synthesis system. Although this system was useful for investigating autophosphorylation of serine residue at position 97 (Ser97) in DYRK1A, only a small fraction of the synthesized protein was successfully autophosphorylated. In this study, we found that the addition of DnaK, a bacterial HSP70 chaperone, to cell-free expression of DYRK1A promoted its Ser97 autophosphorylation. Structure prediction with AlphaFold2 indicates that Ser97 forms a hydrogen bond within an α-helix structure, indicating a possibility that DnaK unfolds the α-helix and maintains the structure around Ser97 in a conformation susceptible to phosphorylation. In addition, DnaK promoted phosphorylation of DYRK1B and HIPK2, but not DYRK2 and DYRK4, suggesting a sequence selectivity in the action of DnaK. This study provides a facile method for promoting autophosphorylation of DYRK family kinases in cell-free protein expression.
Collapse
Affiliation(s)
- Mizuki Aoyama
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Ninako Kimura
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Masato Yamakawa
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Sora Suzuki
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami-ina, Nagano, 399-4598, Japan.
| | - Isao Kii
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami-ina, Nagano, 399-4598, Japan.
| |
Collapse
|
5
|
Rivas M, Debnath S, Giri S, Noffel YM, Sun X, Gevorgyan V. One-Pot Formal Carboradiofluorination of Alkenes: A Toolkit for Positron Emission Tomography Imaging Probe Development. J Am Chem Soc 2023; 145:19265-19273. [PMID: 37625118 PMCID: PMC10760797 DOI: 10.1021/jacs.3c04548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the first one-pot formal alkene carboradiofluorination reaction employing easily accessible alkenes as both prosthetic group precursors and coupling partners. The methodology features rapid sequential Markovnikov-selective iodofluorination and photoinduced Pd(0/I/II)-catalyzed alkyl Heck reaction as a mild and robust fluorine-18 (18F) radiochemical approach for positron emission tomography (PET) imaging probe development. A new class of prosthetic groups for PET imaging probe synthesis was isolated as iodofluorinated intermediates in moderate to excellent yields. The one-pot formal alkenylfluorination reaction was carried out to produce over 30 analogues of a wide range of bioactive molecules. Further application of the Pd(0/I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to facilitate its practical use in multistep radiochemical reactions.
Collapse
Affiliation(s)
- Mónica Rivas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sashi Debnath
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sachin Giri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yusuf M Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
6
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
7
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
8
|
Kimura N, Saito K, Niwa T, Yamakawa M, Igaue S, Ohkanda J, Hosoya T, Kii I. Expression and purification of DYRK1A kinase domain in complex with its folding intermediate-selective inhibitor FINDY. Protein Expr Purif 2022; 195-196:106089. [DOI: 10.1016/j.pep.2022.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|