1
|
Yu S, Zhang S, Zhang A, Han H, Han J, Sun B. Construction and activity evaluation of novel CHS inhibitors against fungal infections. Eur J Med Chem 2025; 287:117337. [PMID: 39908793 DOI: 10.1016/j.ejmech.2025.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Chitin synthase (CHS), as crucial antifungal target, plays a pivotal role in the fungal proliferation and invasion processes. This study constructed pharmacophore models based on ligand and receptor features. These models were used to guide the construction of novel CHS inhibitors via the scaffold-growth pathway. The corresponding molecular structures were synthesized, and their biological activities were evaluated. Among them, compounds 9c, 9e, and 9f exhibited significant inhibitory activity against chitin synthesis, achieving high potent antifungal effect. Furthermore, the potential compound 9f, in combination with immune activators, could accelerate the recovery rate of drug-resistant fungal infections in vivo. This study not only successfully established scientific pharmacophore models but also discovered novel CHS inhibitors, opening up a potential new pathway for effectively treating fungal infections by regulating chitin synthesis pathways.
Collapse
Affiliation(s)
- Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Shiying Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Anli Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Hongfen Han
- Drug Development Department, Shandong Chuancheng Pharmaceutical Co., Ltd, 35 Lushan Road, Liaocheng, 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China.
| |
Collapse
|
2
|
Xie X, Wang J, Bao A, Deng Z, Wang D, Chen W, Jiang W, Li W, Tang X, Yan Y. New 5,6-dihydrobenzo[h]quinoline derivatives as potential demethylase inhibitors (DMIs): design, synthesis, activity evaluation and molecular dynamics simulation. PEST MANAGEMENT SCIENCE 2025; 81:1953-1970. [PMID: 39664009 DOI: 10.1002/ps.8594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Bipolaris maydis is a serious plant fungus and strongly affects the yield and quality of crops. The main control strategy is the employment of fungicides. To research efficient fungicide with novel structure, a series of novel 5,6-dihydrobenzo[h]quinoline derivatives were designed and synthesized. RESULTS Thirty-six novel 5,6-dihydrobenzo[h]quinoline analogues were designed and synthesized. The assay results showed that most compounds exhibited significant fungicidal activity against Pyricularia oryzae, Bipolaris maydis, Sclerotinia sclerotiorum, Penicillium digitatum and Valsa mali at 16 μg mL-1. Compounds 4 h, 5e, 6a and 6b showed better antifungal activity than fluquinconazole against B. maydis. Their half maximal effective concentration (EC50) values were 0.732, 0.283, 0.529, 0.644 and 0.826 μg mL-1, respectively. Furthermore, the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results indicated that they displayed prominent inhibiting activities, 4 h, 5e, 6a and 6b also had better inhibitory activities than fluquinconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.840, 0.315, 0.601, 0.750 and 1.018 μg mL-1, respectively. The fluorescent quenching tests of proteins indicated that the quenching patterns of compounds 5e and 6a were analogous to fluquinconazole. The molecular dynamics (MD) simulations indicated that compound 5e possessed stronger affinity than fluquinconazole to CYP51. CONCLUSION The results of the present study displayed that novel 5,6-dihydrobenzo[h]quinoline derivatives could be one scaffold of potential CYP51 inhibitor and will provide some valuable information for the research and development of new fungicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiansong Xie
- School of Science, Xihua University, Chengdu, P.R. China
| | - Jingwen Wang
- School of Science, Xihua University, Chengdu, P.R. China
| | - Ailing Bao
- School of Science, Xihua University, Chengdu, P.R. China
| | - Ziquan Deng
- School of Science, Xihua University, Chengdu, P.R. China
| | - Deyuan Wang
- School of Science, Xihua University, Chengdu, P.R. China
| | - Wenrui Chen
- School of Science, Xihua University, Chengdu, P.R. China
| | - Wenjing Jiang
- School of Science, Xihua University, Chengdu, P.R. China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu, P.R. China
| | - Xiaorong Tang
- School of Science, Xihua University, Chengdu, P.R. China
| | - Yingkun Yan
- School of Science, Xihua University, Chengdu, P.R. China
| |
Collapse
|
3
|
Zobi C, Algul O. The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies. Chem Biol Drug Des 2025; 105:e70045. [PMID: 39841631 PMCID: PMC11753615 DOI: 10.1111/cbdd.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy. Recent research has highlighted the potential of dual inhibitors that simultaneously target multiple pathways or enzymes involved in fungal growth and survival. Combining pharmacophores, such as lanosterol 14α-demethylase (CYP51), heat shock protein 90 (HSP90), histone deacetylase (HDAC), and squalene epoxidase (SE) inhibitors, has led to the development of compounds with enhanced antifungal activity and reduced resistance. This dual-target approach, along with novel chemical scaffolds, not only represents a promising strategy for combating antifungal resistance but is also being utilized in the development of anticancer agents. This review explores the development of new antifungal agents that employ mono-, dual-, or multi-target strategies to combat IFIs. We discuss emerging antifungal targets, resistance mechanisms, and innovative therapeutic approaches that offer hope in managing these challenging infections.
Collapse
Affiliation(s)
- Cengiz Zobi
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of İliç Dursun Yildirim MYOErzincan Binali Yildirim UniversityErzincanTurkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMersin UniversityMersinTurkiye
| |
Collapse
|
4
|
Wang YR, Zhang ZJ, Jing CX, Mou GL, Zhang W, Jin YR, Qin LL, An JX, Zhang SY, Liu YQ. Antifungal Effects and Postharvest Diseases Control Potential of E, E-2, 4-Nonadienal against Rhizopus stolonifer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25509-25521. [PMID: 39514239 DOI: 10.1021/acs.jafc.4c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pathogenic microorganisms are a significant cause of food spoilage, adversely affecting both product quality and human health. This study evaluated the antifungal activities of 34 aldehydes against foodborne and plant pathogenic fungi, identifying 8 promising lead compounds. Among them, E, E-2, 4-nonadienal exhibited optimal effects against Rhizopus stolonifer with an EC50 of 11.29 μg/mL. In vitro assays demonstrated that E, E-2, 4-nonadienal significantly impact R. stolonifer through both direct contact and fumigation. The preliminary mode of action (MOA) studies indicated that it effectively inhibited spore germination, disrupted ergosterol biosynthesis, and induced oxidative stress, affecting the permeability of the fungal cell membrane and altering mycelial morphology. Additionally, E, E-2, 4-nonadienal significantly reduced soft rot in spore-infected stored cherry tomatoes and showed low toxicity. Thus, aldehydes, exemplified by E, E-2, 4-nonadienal, are potential food and agricultural preservatives, offering efficiency, safety, and cost-effectiveness.
Collapse
Affiliation(s)
- Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen-Xin Jing
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guo-Liang Mou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lu-Lu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
5
|
Yan Y, Xie X, Jiang W, Bao A, Deng Z, Wang D, Wang J, Li W, Tang X. Novel Pyrido[4,3- d]pyrimidine Derivatives as Potential Sterol 14α-Demethylase Inhibitors: Design, Synthesis, Inhibitory Activity, and Molecular Modeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12260-12269. [PMID: 38759097 DOI: 10.1021/acs.jafc.3c09543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 μg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 μg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 μg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.
Collapse
Affiliation(s)
- Yingkun Yan
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiansong Xie
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Wenjing Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Ailing Bao
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Ziquan Deng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Deyuan Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jingwen Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiaorong Tang
- School of Science, Xihua University, Chengdu 610039, PR China
| |
Collapse
|
6
|
Yu S, He YQ, Liu Y, Ji S, Wang Y, Sun B. Construction and Activity Evaluation of Novel Bifunctional Inhibitors and a COF Carrier Based on a Fungal Infection Microenvironment. J Med Chem 2024; 67:8420-8444. [PMID: 38718180 DOI: 10.1021/acs.jmedchem.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Faced with increasingly serious fungal infections and drug resistance issues, three different series of novel dual-target (programmed death ligand 1/14 α-demethylase) compounds were constructed through the fragment combination pathway in the study. Their chemical structures were synthesized, characterized, and evaluated. Among them, preferred compounds 10c-1, 17b-1, and 18b-2 could efficiently exert their antifungal and antidrug-resistant fungal ability through blocking ergosterol biosynthesis, inducing the upregulation of reactive oxygen species level, and triggering apoptosis. Especially, compound 18b-2 exhibited the synergistic function of fungal inhibition and immune activation. Moreover, the covalent organic framework carrier was also generated based on the acidic microenvironment of fungal infection to improve the bioavailability and targeting of preferred compounds; this finally accelerated the body's recovery rate.
Collapse
Affiliation(s)
- Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shilei Ji
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yajing Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
7
|
Shen C, Luo Z, Zhan P, Deng F, Zhang P, Shen B, Hu J. Antifungal activity and potential mechanism of action of Huangqin decoction against Trichophyton rubrum. J Med Microbiol 2024; 73. [PMID: 38348868 DOI: 10.1099/jmm.0.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Introduction. Trichophyton rubrum is a major causative agent of superficial dermatomycoses such as onychomycosis and tinea pedis. Huangqin decoction (HQD), as a classical traditional Chinese medicine formula, was found to inhibit the growth of common clinical dermatophytes such as T. rubrum in our previous drug susceptibility experiments.Hypothesis/Gap Statement. The antifungal activity and potential mechanism of HQD against T. rubrum have not yet been investigated.Aim. The aim of this study was to investigate the antifungal activity and explore the potential mechanism of action of HQD against T. rubrum.Methodology. The present study was performed to evaluate the antifungal activity of HQD against T. rubrum by determination of minimal inhibitory concentrations (MICs), minimal fungicidal concentrations (MFCs), mycelial growth, biomass, spore germination and structural damage, and explore its preliminary anti-dermatophyte mechanisms by sorbitol and ergosterol assay, HPLC-based ergosterol test, enzyme-linked immunosorbent assay and mitochondrial enzyme activity test.Results. HQD was able to inhibit the growth of T. rubrum significantly, with an MIC of 3.125 mg ml-1 and an MFC of 12.5 mg ml-1. It also significantly inhibited the hyphal growth, conidia germination and biomass growth of T. rubrum in a dose-dependent manner, and induced structural damage in different degrees for T. rubrum cells. HQD showed no effect on cell wall integrity, but was able to damage the cell membrane of T. rubrum by interfering with ergosterol biosynthesis, involving the reduction of squalene epoxidase (SE) and sterol 14α-demethylase P450 (CYP51) activities, and also affect the malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and ATPase activities of mitochondria.Conclusion. These results revealed that HQD had significant anti-dermatophyte activity, which was associated with destroying the cell membrane and affecting the enzyme activities of mitochondria.
Collapse
Affiliation(s)
- Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Zhong Luo
- School of Pharmacy, Nanochang University, Nanchang, PR China
| | - Ping Zhan
- Department of Dermatology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Fengyi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Pei Zhang
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Jianxin Hu
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| |
Collapse
|
8
|
Bao J, Hao Y, Ni T, Wang R, Liu J, Chi X, Wang T, Yu S, Jin Y, Yan L, Li X, Zhang D, Xie F. Design, synthesis and in vitro biological studies of novel triazoles with potent and broad-spectrum antifungal activity. J Enzyme Inhib Med Chem 2023; 38:2244696. [PMID: 37553905 PMCID: PMC10413920 DOI: 10.1080/14756366.2023.2244696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
A series of novel triazole derivatives containing aryl-propanamide side chains was designed and synthesised. In vitro antifungal activity studies demonstrated that most of the compounds inhibited the growth of six human pathogenic fungi. In particular, parts of phenyl-propionamide-containing compounds had excellent, broad-spectrum antifungal activity against Candida albicans SC5314, Cryptococcus neoformans 22-21, Candida glabrata 537 and Candida parapsilosis 22-20 with MIC values in the range of ≤0.125 µg/mL-4.0 µg/mL. In addition, compounds A1, A2, A6, A12 and A15 showed inhibitory activities against fluconazole-resistant Candida albicans and Candida auris. Preliminary structure-activity relationships (SARs) are also summarised. Moreover, GC-MS analysis demonstrated that A1, A3, and A9 interfered with the C. albicans ergosterol biosynthesis pathway by inhibiting Cyp51. Molecular docking studies elucidated the binding modes of A3 and A9 with Cyp51. These compounds with low haemolytic activity and favourable ADME/T properties are promising for the development of novel antifungal agents.
Collapse
Affiliation(s)
- Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiacun Liu
- Center of New Drug Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaomei Li
- Department of Stomatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Sun B, Liu W, Wang Q, Liu Y, Yu S, Liu M, Han J. Design, Synthesis, and Activity Evaluation of Novel Dual-Target Inhibitors with Antifungal and Immunoregulatory Properties. J Med Chem 2023; 66:13007-13027. [PMID: 37705322 DOI: 10.1021/acs.jmedchem.3c00942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Dual-target (CYP51/PD-L1) plays an important role in the process of fungal proliferation and immune suppression. A series of novel quinazoline compounds with dual-target inhibition function was constructed using the skeleton growth method, and their structures were synthesized, characterized, and evaluated. Among them, the perfected compounds (L11, L20, L21) were selected for further study, which exhibited remarkable biological activity against different fungal strains (MIC50, 0.25-2.0 μg/mL) in vitro. On the one hand, these compounds inhibited CYP51 activity, induced ROS aggregation, and mitochondrial damage; this ultimately caused fungal lysis and death. On the other hand, they also effectively activated the body's immune ability by blocking the interaction between PD-L1 and PD-1, slowed down the inflammatory reaction, and accelerated the recovery process of fungal infections.
Collapse
Affiliation(s)
- Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
11
|
Xie F, Hao Y, Li L, Wang R, Bao J, Chi X, Monk BC, Wang T, Yu S, Jin Y, Zhang D, Ni T, Yan L. Novel antifungal triazoles with alkynyl-methoxyl side chains: Design, synthesis, and biological activity evaluation. Eur J Med Chem 2023; 257:115506. [PMID: 37216811 DOI: 10.1016/j.ejmech.2023.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 μg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 μg/mL of 16, 18, and 29 was more effective than 2 μg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 μg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 μg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.
Collapse
Affiliation(s)
- Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
12
|
Liu Y, Liu W, Yu S, Wang Q, Liu M, Han J, Sun B. Novel Aryl Alkamidazole Derivatives as Multifunctional Antifungal Inhibitors: Design, Synthesis, and Biological Evaluation. J Med Chem 2022; 65:14916-14937. [DOI: 10.1021/acs.jmedchem.2c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
13
|
Liu W, Liu Y, Fan H, Liu M, Han J, An Y, Dong Y, Sun B. Design, Synthesis, and Biological Evaluation of Dual-Target COX-2/CYP51 Inhibitors for the Treatment of Fungal Infectious Diseases. J Med Chem 2022; 65:12219-12239. [PMID: 36074863 DOI: 10.1021/acs.jmedchem.2c00878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of novel dual-target (COX-2/CYP51) inhibitors was proposed in the study, and three series of compounds were constructed though the pathway of skeleton screening and combination; their molecular structures were synthesized and evaluated. Most of the compounds exhibited significant antifungal ability. Among them, potential compounds (10a-2, 16b-3) with excellent antifungal and anti-drug-resistant fungal ability (MIC50, 0.125-2.0 μg/mL) were selected for the subsequent mechanistic study. On the one hand, these compounds could block the ergosterol biosynthesis pathway by inhibiting CYP51 and influence the internal physiological function of fungal cells, which included the increase of the ROS level, the anomaly of ΔΨm, and the emergence of an apoptotic state. On the other hand, these compounds also effectively showed COX-2 inhibition ability, eliminated the inflammatory reaction of the infected region, and activated the body's immune function. In summary, this study not only provided a novel antifungal drug design pathway but also discovered excellent target compounds.
Collapse
Affiliation(s)
- Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Haiyan Fan
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yunfei An
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yue Dong
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| |
Collapse
|
14
|
Li L, Wu H, Zhu S, Ji Z, Chi X, Xie F, Hao Y, Lu H, Yang F, Yan L, Zhang D, Jiang Y, Ni T. Discovery of Novel 7-Hydroxy-5-oxo-4,5-dihydrothieno[3,2- b]pyridine-6-carboxamide Derivatives with Potent and Selective Antifungal Activity against Cryptococcus Species. J Med Chem 2022; 65:11257-11269. [PMID: 35922963 DOI: 10.1021/acs.jmedchem.2c00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii can cause fatal invasive infections, especially in immunocompromised patients. However, few antifungal drugs are available to help treat cryptococcosis. In this study, by compound library screening, we presented the first report of hit compound P163-0892, which had potent in vitro and in vivo antifungal activity against Cryptococcus spp. In vitro tests showed that P163-0892 was not cytotoxic and had highly selective and strong antifungal activities against Cryptococcus spp. with MIC values less than 1 μg/mL. Synergism of P163-0892 and fluconazole was also observed in vitro. The in vivo antifungal efficacy of P163-0892 was assessed in a wax moth larval fungal infection model, and treatment with 10 mg/kg P163-0892 caused a significant reduction in fungal burden and significant extension of the survival time. Taken together, our data indicate that the hit compound P163-0892 warrants further investigation as a novel anti-Cryptococcus agent.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xiaochen Chi
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
15
|
Design, synthesis, and biological evaluation of selenium-containing small molecule compounds based on the dual mechanism of fungal CYP51 inhibition and fungal ROS generation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|