1
|
Jiang M, Giannino N, Goebel GL, Sievers S, Wu P. LIN28-Targeting Chromenopyrazoles and Tetrahydroquinolines Induced Cellular Morphological Changes and Showed High Biosimilarity with BRD PROTACs. ChemMedChem 2025; 20:e202400547. [PMID: 39353851 DOI: 10.1002/cmdc.202400547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
The probing of small molecules with heterocyclic scaffolds covering unexplored chemical space and the evaluation of their biological relevance are essential parts of forward chemical genetics approaches and for the development of potential small-molecule therapeutics. In this study, we profiled sets of chromenopyrazoles (CMPs) and tetrahydroquinolines (THQs), originally developed to target the protein-RNA interaction of LIN28-let-7, in a cell painting assay (CPA) measuring cellular morphological changes. Selected LIN28-inactive CMPs and THQs induced cellular morphological changes to different extents. The most CPA-active CMPs 2 and 3 exhibited high bio-similarity with the LCH and BET clusters, while the most CPA-active THQs 13 and 20 indicated a mechanism of action beyond the currently established biosimilarity clusters. Overall, this work demonstrated that CPA is useful in revealing "hidden" biological targets and mechanisms of action for biologically inactive small molecules, which are CMPs and THQs targeting the RNA-binding protein LIN28 in this case, evaluated in target-based strategies. When compared with annotated reference compounds, CMP 3 exhibited a high biosimilarity with the dual BRD7/9 degrading PROTAC VZ185, suggesting that CPA could potentially function as a new phenotypic approach to identify degrader molecules.
Collapse
Affiliation(s)
- Mao Jiang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Nicole Giannino
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| |
Collapse
|
2
|
Cotino‐Nájera S, García‐Villa E, Cruz‐Rosales S, Gariglio P, Díaz‐Chávez J. The role of Lin28A and Lin28B in cancer beyond Let-7. FEBS Lett 2024; 598:2963-2979. [PMID: 39152528 PMCID: PMC11665955 DOI: 10.1002/1873-3468.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.
Collapse
Affiliation(s)
- Sandra Cotino‐Nájera
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Enrique García‐Villa
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Samantha Cruz‐Rosales
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Patricio Gariglio
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - José Díaz‐Chávez
- Departamento de Biología Celular, Facultad de CienciasUNAMMexico CityMexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones BiomédicasUNAM/Instituto Nacional de CancerologíaMexico CityMexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la SaludMexico
| |
Collapse
|
3
|
Goebel GL, Giannino N, Lampe P, Qiu X, Schloßhauer JL, Imig J, Sievers S, Wu P. Profiling Cellular Morphological Changes Induced by Dual-Targeting PROTACs of Aurora Kinase and RNA-Binding Protein YTHDF2. Chembiochem 2024; 25:e202400183. [PMID: 38837838 DOI: 10.1002/cbic.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are new chemical modalities that degrade proteins of interest, including established kinase targets and emerging RNA-binding proteins (RBPs). Whereas diverse sets of biochemical, biophysical and cellular assays are available for the evaluation and optimizations of PROTACs in understanding the involved ubiquitin-proteasome-mediated degradation mechanism and the structure-degradation relationship, a phenotypic method profiling the cellular morphological changes is rarely used. In this study, first, we reported the only examples of PROTACs degrading the mRNA-binding protein YTHDF2 via screening of multikinase PROTACs. Second, we reported the profiling of cellular morphological changes of the dual kinase- and RBP-targeting PROTACs using the unbiased cell painting assay (CPA). The CPA analysis revealed the high biosimilarity with the established aurora kinase cluster and annotated aurora kinase inhibitors, which reflected the association between YTHDF2 and the aurora kinase signaling network. Broadly, the results demonstrated that the cell painting assay can be a straightforward and powerful approach to evaluate PROTACs. Complementary to the existing biochemical, biophysical and cellular assays, CPA provided a new perspective in characterizing PROTACs at the cellular morphology.
Collapse
Affiliation(s)
- Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Nicole Giannino
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jeffrey L Schloßhauer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Jochen Imig
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| |
Collapse
|
4
|
Barone S, Cerchia C, Summa V, Brindisi M. Methyl-Transferase-Like Protein 16 (METTL16): The Intriguing Journey of a Key Epitranscriptomic Player Becoming an Emerging Biological Target. J Med Chem 2024; 67:14786-14806. [PMID: 39150226 DOI: 10.1021/acs.jmedchem.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Key epitranscriptomic players have been increasingly characterized for their structural features and their involvement in several diseases. Accordingly, the design and synthesis of novel epitranscriptomic modulators have started opening a glimmer for drug discovery. m6A is a reversible modification occurring on a specific site and is catalyzed by three sets of proteins responsible for opposite functions. Writers (e.g., methyl-transferase-like protein (METTL) 3/METTL14 complex and METTL16) introduce the methyl group on adenosine N-6, by transferring the methyl group from the methyl donor S-adenosyl-methionine (SAM) to the substrate. Despite the rapidly advancing drug discovery progress on METTL3/METTL14, the METTL16 m6A writer has been marginally explored so far. We herein provide the first comprehensive overview of structural and biological features of METTL16, highlighting the state of the art in the field of its biological and structural characterization. We also showcase initial efforts in the identification of structural templates and preliminary structure-activity relationships for METTL16 modulators.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
5
|
Liu Y, Goebel GL, Kanis L, Hastürk O, Kemker C, Wu P. Aminothiazolone Inhibitors Disrupt the Protein-RNA Interaction of METTL16 and Modulate the m 6A RNA Modification. JACS AU 2024; 4:1436-1449. [PMID: 38665670 PMCID: PMC11040665 DOI: 10.1021/jacsau.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Targeting RNA-binding and modifying proteins via small molecules to modulate post-transcriptional modifications have emerged as a new frontier for chemical biology and therapeutic research. One such RNA-binding protein that regulates the most prevalent eukaryotic RNA modification, N6-methyladenosine (m6A), is the methyltransferase-like protein 16 (METTL16), which plays an oncogenic role in cancers by cofunctioning with other nucleic acid-binding proteins. To date, no potent small-molecule inhibitor of METTL16 or modulator interfering with the METTL16-RNA interaction has been reported and validated, highlighting the unmet need to develop such small molecules to investigate the METTL16-involved regulatory network. Herein, we described the identification of a series of first-in-class aminothiazolone METTL16 inhibitors via a discovery pipeline that started with a fluorescence-polarization (FP)-based screening. Structural optimization of the initial hit yielded inhibitors, such as compound 45, that showed potent single-digit micromolar inhibition activity against the METTL16-RNA binding. The identified aminothiazolone inhibitors can be useful probes to elucidate the biological function of METTL16 upon perturbation and evaluate the therapeutic potential of METTL16 inhibition via small molecules at the post-transcriptional level.
Collapse
Affiliation(s)
- Yang Liu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Laurin Kanis
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Oguz Hastürk
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Claus Kemker
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
6
|
Raja R, Sundararaj R, Kandasamy R. Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism. Med Oncol 2024; 41:118. [PMID: 38630184 DOI: 10.1007/s12032-024-02350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The reciprocal suppression of an RNA-binding protein LIN28 (human abnormal cell lineage 28) and miRNA Let-7 (Lethal 7) is considered to have a prime role in hepatocellular carcinoma (HCC). Though targeting this inhibition interaction is effective for therapeutics, it causes other unfavorable effects on glucose metabolism and increased insulin resistance. Hence, this study aims to identify small molecules targeting Lin28/let-7 interaction along with additional potency to improve insulin sensitivity. Of 22,14,996 small molecules screened by high throughput virtual screening, 6 molecules, namely 41354, 1558, 12437, 23837, 15710, and 8319 were able to block the LIN28 interaction with let-7 and increase the insulin sensitivity via interacting with PPARγ (peroxisome proliferator-activated receptors γ). MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) analysis is used to re-score the binding affinity of docked complexes. Upon further analysis, it is also seen that these molecules have superior ADME (Absorption, Distribution, Metabolism, and Excretion) properties and form stable complexes with the targets for a significant period in a biologically simulated environment (Molecular Dynamics simulation) for 100 ns. From our results, we hypothesize that these identified 6 small molecules can be potential candidates for HCC treatment and the glucose metabolic disorder caused by the HCC treatment.
Collapse
Affiliation(s)
- Rachanaa Raja
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
7
|
Oyejobi GK, Yan X, Sliz P, Wang L. Regulating Protein-RNA Interactions: Advances in Targeting the LIN28/Let-7 Pathway. Int J Mol Sci 2024; 25:3585. [PMID: 38612395 PMCID: PMC11011352 DOI: 10.3390/ijms25073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Xiaodan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| |
Collapse
|
8
|
Martín-Encinas E, Lopez-Aguileta L, Palacios F, Alonso C. Aza-Povarov Reaction. A Method for the Synthesis of Fused Tetracyclic Chromeno[4,3- d]pyrido[1,2- a]pyrimidines. J Org Chem 2024. [PMID: 38177107 DOI: 10.1021/acs.joc.3c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A cornerstone in drug discovery is the development of strategies to provide privileged small molecules with specific structural and stereochemical complexity, allowing access to new potential therapeutic entities. In this work, a new strategy based on the [4 + 2] Povarov reaction involving 1,3-diazadiene was developed. This approach is applied for a straightforward procedure in the preparation of chromeno[4,3-d]pyrido[1,2-a]pyrimidine derivatives, with accessible substrates, 2-aminopyridine and unsaturated aldehydes, and excellent atom economy to obtain four fused ring heterocycles, in a regio- and diastereoselective way.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Leyre Lopez-Aguileta
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
9
|
Borgelt L, Hohnen L, Pallesen JS, Hommen P, Goebel GL, Bosica F, Liu Y, O’Mahony G, Wu P. N-Biphenyl Pyrrolinones and Dibenzofurans as RNA-Binding Protein LIN28 Inhibitors Disrupting the LIN28- Let-7 Interaction. ACS Med Chem Lett 2023; 14:1707-1715. [PMID: 38116413 PMCID: PMC10726440 DOI: 10.1021/acsmedchemlett.3c00341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
The RNA-binding protein LIN28 is a regulator of miRNA let-7 biogenesis. Inhibitors of LIN28 are highly sought after given the central role that LIN28 plays in tumorigenesis and development of cancer stem cells as well as LIN28's association with poor clinical prognosis. Although LIN28 inhibitors of different scaffolds have been reported, the potential of most LIN28 inhibiting small molecules was not fully explored since very limited structure-activity relationship (SAR) studies have been performed. We previously identified trisubstituted pyrrolinones as a new class of LIN28 inhibitors disrupting the LIN28-let-7 interaction. Here, we performed extensive SAR by evaluating 95 small molecules and identified new trisubstituted pyrrolinones featuring either an N-biphenyl or N-dibenzofuran substituent, overthrowing the existing conclusion that a salicylic acid moiety is indispensable for activity. Exchange of the negatively charged salicylic acid moiety in LIN28 inhibitors with a heterocyclic substituent is beneficial for membrane permeability, leading to increased activity in a cellular assay, and will potentially reduce toxicity.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Lisa Hohnen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr-University
Bochum, Universitätsstr.
150, Bochum 44801, Germany
| | - Jakob S. Pallesen
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Pascal Hommen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Francesco Bosica
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Yang Liu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Gavin O’Mahony
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| |
Collapse
|
10
|
Borgelt L, Huang F, Hohnen L, Qiu X, Goebel GL, Hommen P, Wu P. Spirocyclic Chromenopyrazole Inhibitors Disrupting the Interaction between the RNA-Binding Protein LIN28 and Let-7. Chembiochem 2023; 24:e202300168. [PMID: 37129525 DOI: 10.1002/cbic.202300168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
Small-molecule inhibitors of the RNA-binding and regulating protein LIN28 have the potential to be developed as chemical probes for biological perturbation and as therapeutic candidates. Reported small molecules disrupting the interaction between LIN28 and let-7 miRNA suffer from moderate to weak inhibitory activity and flat structure-activity relationship, which hindered the development of next-generation LIN28 inhibitors that warrant further evaluations. We report herein the identification of new LIN28 inhibitors utilizing a spirocyclization strategy based on a chromenopyrazole scaffold. Representative compounds 2-5 showed potent in vitro inhibitory activity against LIN28-let-7 interaction and single-digit micromolar potency in inhibiting the proliferation of LIN28-expressing JAR cancer cells. The spirocyclic compound 5 incorporated a position that is amenable for functional group appendage and further structural modifications. The binding mode of compound 5 with the LIN28 cold shock domain was rationalized via a molecular docking analysis.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
11
|
Hommen P, Hwang J, Huang F, Borgelt L, Hohnen L, Wu P. Chromenopyrazole-Peptide Conjugates as Small-Molecule Based Inhibitors Disrupting the Protein-RNA Interaction of LIN28-let-7. Chembiochem 2023; 24:e202300376. [PMID: 37224100 DOI: 10.1002/cbic.202300376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Targeting the protein-RNA interaction of LIN28 and let-7 is a promising strategy for the development of novel anticancer therapeutics. However, a limited number of small-molecule inhibitors disrupting the LIN28-let-7 interaction with potent efficacy are available. Herein, we developed a novel LIN28-inhibiting strategy by targeting selective hotspot amino acids at the LIN28-let-7 binding interface with small-molecule-based bifunctional conjugates. Starting from reported small-molecule LIN28 inhibitors, we identified a feasible linker-attachment position after performing a structure-activity relationship exploration based on the LIN28-targeting chromenopyrazoles. In parallel, a virtual alanine scan identified hotspot residues at the protein-RNA binding interface, based on which we designed a set of peptides to enhance the interaction with the identified hotspot residues. Conjugation of the tailor-designed peptides with linker-attached chromenopyrazoles yielded a series of bifunctional small-molecule-peptide conjugates, represented by compound 83 (PH-223), as a new LIN28-targeting chemical modality. Our result demonstrated an unexplored rational design approach using bifunctional conjugates to target protein-RNA interactions.
Collapse
Affiliation(s)
- Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
12
|
Zhang X, Xing Q, Gou Z, Gan S, Wang W, Li Z, Shao H, Wang C. Synthesis of Functionalized Tetrahydroquinoline Containing Indole Scaffold via Chemoselective Annulation of Aza- ortho-quinone Methide Precursor. ACS OMEGA 2023; 8:22352-22360. [PMID: 37396238 PMCID: PMC10308564 DOI: 10.1021/acsomega.2c07036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 07/04/2023]
Abstract
The chemoselective annulation of aza-ortho-quinone methide generated by in situ o-chloromethyl sulfonamide has been achieved with bifunctional acyclic olefin. This efficient approach provides access to the diastereoselective synthesis of functionalized tetrahydroquinoline derivatives containing indole scaffolds through the inverse-electron-demand aza-Diels-Alder reaction under mild reaction conditions with excellent results (up to 93% yield, > 20:1 dr). Moreover, this article realized the cyclization of α-halogeno hydrazone with electron-deficient alkene affording the tetrahydropyridazine derivatives, which had never been reported.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Qianlu Xing
- Department
of Pediatrics, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengxing Gou
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Wenjuan Wang
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Ziwei Li
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| |
Collapse
|
13
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
14
|
Borgelt L, Haacke N, Lampe P, Qiu X, Gasper R, Schiller D, Hwang J, Sievers S, Wu P. Small-molecule screening of ribonuclease L binders for RNA degradation. Biomed Pharmacother 2022; 154:113589. [PMID: 36029542 DOI: 10.1016/j.biopha.2022.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022] Open
Abstract
Small molecules targeting the ubiquitous latent ribonuclease (RNase L), which has limited sequence specificity toward single-stranded RNA substrates, hold great potential to be developed as broad-spectrum antiviral drugs by modulating the RNase L-mediated innate immune responses. The recent development of proximity-inducing bifunctional molecules, as described in the strategy of ribonuclease targeting chimeras, demonstrated that small-molecule RNase L activators can function as the essential RNase L-recruiting component to design bifunctional molecules for targeted RNA degradation. However, only a single screening study on small-molecule RNase L activators with poor potency has been reported to date. Herein, we established a FRET assay and conducted a screening of 240,000 small molecules to identify new RNase L activators with improved potency. The extremely low hit rate of less than 0.03% demonstrated the challenging nature of RNase L activation by small molecules available from current screening collections. A few hit compounds induced enhanced thermal stability of RNase L upon binding, although validation assays did not lead to the identification of compounds with significantly improved RNase L activating potency. The sulfonamide compound 17 induced a thermal shift of ~ 0.9 °C upon binding to RNase L, induced significant apoptosis in cancer cells, and showed single-digit micromolar inhibitory activity against cancer cell proliferation. This study paves the way for future structural optimization for the development of small-molecule RNase L binders.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Neele Haacke
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Compound Management and Screening Center, Dortmund 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Damian Schiller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Compound Management and Screening Center, Dortmund 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany.
| |
Collapse
|
15
|
Chen Y, Qin H, Zheng L. Research progress on RNA-binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
17
|
Hosseini A, Motavalizadehkakhky A, Ghobadi N, Gholamzadeh P. Aza-Diels-Alder reactions in the synthesis of tetrahydroquinoline structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|