1
|
Qu S, Dai H. Conjugated STING agonists. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102530. [PMID: 40291379 PMCID: PMC12032345 DOI: 10.1016/j.omtn.2025.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An innate immune system is the first line of defense and prevents the host from infection and attacks the invading pathogens. Stimulator of interferon genes (STING) plays a vital role in the innate immune system. STING activation by STING agonists leads to phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) with the release of type I interferons and proinflammatory cytokines, further promoting the adaptive immune response and activating T cells by increased antigen presentation. Natural STING agonist cyclic dinucleotides (CDNs) encounter many defects such as high polarity by negative charges, low stability and circulative half-life, off-target systemic toxicity, and low response efficacy in clinical trials. To overcome these challenges, massive efforts have addressed chemical modifications of CDNs, development of non-CDN STING agonists, and delivery of these STING agonists either by conjugation or liposomes/nanoparticles. Considering there have been a great number of reports regarding nanosystem-aided delivery, here, we examine the development of STING agonists, especially for non-CDNs and their delivery specifically by conjugation strategy, with a focus on the STING agonists in clinical trials and current challenges of their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuhao Qu
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Basu S, Middya S, Shrivastava R, Pryde DC, Ghosh R, Yadav DB, Banerjee M, Surya A. Synthesis and structure-activity evaluation of a series of novel tricyclic STING activators. Eur J Med Chem 2025; 290:117577. [PMID: 40179614 DOI: 10.1016/j.ejmech.2025.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
A novel small molecule tricyclic series of STING activators was designed, synthesized and evaluated for human STING activity. These STING agonists were optimized from an initial set of structures with low potency through iterative cycles of design, synthesis and biological evaluation to yield compounds with potent human STING activity. The binding and functional properties of 68, an exemplar from the series were determined. Further, while 68 activated major variants of human STING it did not activate murine STING. Treatment of human PBMCs led to pathway engagement and the release of pro-inflammatory cytokines. When administered intra-tumorally, 68 caused robust retardation in the growth of MCA205 mouse fibrosarcoma tumors in human STING knock-in mice.
Collapse
Affiliation(s)
- Sourav Basu
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Ritesh Shrivastava
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - David C Pryde
- Curadev Pharma Ltd., Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent, CT13 9ND, UK
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Dharmendra B Yadav
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Monali Banerjee
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Arjun Surya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India.
| |
Collapse
|
3
|
Sülzen H, Klima M, Duchoslav V, Boura E. SPR is a fast and straightforward method to estimate the binding constants of cyclic dinucleotides to their binding partners, such as STING or poxin. Biophys Chem 2025; 319:107392. [PMID: 39847823 DOI: 10.1016/j.bpc.2025.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC50 or EC50 values are used to rank these compounds. While thermodynamic values, such as the dissociation constant (KD), would be more informative, they are experimentally less accessible. In this study, we compare isothermal calorimetry (ITC) with surface plasmon resonance (SPR) using human STING, a key protein of innate immunity, and several cyclic dinucleotides (CDNs) that serve as its ligands. We demonstrate that SPR, with recent technological advancements, provides KDs that are sufficiently accurate for drug development purposes. To illustrate the versatility of our approach, we also used SPR to estimate the KD of poxin binding to cyclic GMP-AMP (cGAMP) that serves as a second messenger in the innate immune system. In conclusion, SPR offers a high benefit-to-cost ratio, making it an effective tool in the drug design process.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Vojtech Duchoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Lu X, Li X, Li L, Han C, Li S. Advances in the prerequisite and consequence of STING downstream signalosomes. MEDICAL REVIEW (2021) 2024; 4:435-451. [PMID: 39444795 PMCID: PMC11495525 DOI: 10.1515/mr-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 10/25/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an evolving DNA-sensing mechanism involved in innate immunity and pathogen defense that has been optimized while remaining conserved. Aside from recognizing pathogens through conserved motifs, these receptors also detect aberrant or misplaced self-molecules as possible signs of perturbed homeostasis. Upon binding external or self-derived DNA, a mobile secondary messenger 2'3'-cyclic GMP-AMP (cGAMP) is produced by cGAS and in turn activates its adapter STING in the endoplasmic reticulum (ER). Resting-state or activated STING protein is finely restricted by multiple degradation machineries. The post-translational changes of the STING protein, along with the regulatory machinery of the secret routes, limit the onset, strength and sustention of STING signal. STING experiences a conformational shift and relocates with TBK1 from the ER to perinuclear vesicles containing transcription factors, provoking the transcription activity of IRF3/IFN-I and NF-κB pathways, as well as to initiate a number of cellular processes that have been shown to alter the immune landscape in cancer, such as autophagy, NLRP3 inflammasome, ER stress, and cell death. STING signal thus serves as a potent activator for immune mobilization yet also triggers immune-mediated pathology in tissues. Recent advances have established the vital role of STING in immune surveillance as well as tumorigenic process. This review provides an overview of the disparate outcomes of cancer attributed to the actions of pleiotropic and coordinated STING downstream signalosomes, along with the underlying mechanisms of STING function in pathologies, providing therapeutic implications for new approaches in hunt for the next generation of cancer immunotherapy base on STING.
Collapse
Affiliation(s)
- Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Li
- InvivoGen Ltd., Hong Kong Science and Technology Parks, Hong Kong, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Li R, Chen L, He X, Cao D, Zhang Z, Jiang H, Chen K, Cheng X. Loops Mediate Agonist-Induced Activation of the Stimulator of Interferon Genes Protein. J Chem Inf Model 2023; 63:7373-7381. [PMID: 37831484 DOI: 10.1021/acs.jcim.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The stimulator of interferon genes (STING) is an important therapeutic target for cancer diseases. The activated STING recruits downstream tank-binding kinase 1 (TBK1) to trigger several important immune responses. However, the molecular mechanism of how agonist molecules mediate the STING-TBK1 interactions remains elusive. Here, we performed molecular dynamics simulations to capture the conformational changes of STING and TBK1 upon agonist binding. Our simulations revealed that multiple helices (α5-α7) and especially three loops (loop 6, loop 8, and C-terminal tail) of STING participated in the allosteric mediation of the STING-TBK1 interactions. Consistent results were also observed in the simulations of the constitutive activating mutant of STING (R284S). We further identified α5 as a key region in this agonist-induced activation mechanism of STING. Free-energy perturbation calculations of multiple STING agonists demonstrated that an alkynyl group targeting α5 is a determinant for agonist activities. These results not only offer deeper insights into the agonist-induced allosteric mediation of STING-TKB1 interactions but also provide a guidance for future drug development of this important therapeutic target.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Duanhua Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zehong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, No.1 Xiangshan Branch Lane, Hangzhou 310024, China
| |
Collapse
|
6
|
Jin X, Wang W, Zhao X, Jiang W, Shao Q, Chen Z, Huang C. The battle between the innate immune cGAS-STING signaling pathway and human herpesvirus infection. Front Immunol 2023; 14:1235590. [PMID: 37600809 PMCID: PMC10433641 DOI: 10.3389/fimmu.2023.1235590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The incidence of human herpesvirus (HHVs) is gradually increasing and has affected a wide range of population. HHVs can result in serious consequences such as tumors, neonatal malformations, sexually transmitted diseases, as well as pose an immense threat to the human health. The cGAS-STING pathway is one of the innate immune pattern-recognition receptors discovered recently. This article discusses the role of the cGAS-STING pathway in human diseases, especially in human herpesvirus infections, as well as highlights how these viruses act on this pathway to evade the host immunity. Moreover, the author provides a comprehensive overview of modulators of the cGAS-STING pathway. By focusing on the small molecule compounds based on the cGAS-STING pathway, novel targets and concepts have been proposed for the development of antiviral drugs and vaccines, while also providing a reference for the investigation of disease models related to the cGAS-STING pathway. HHV is a double-stranded DNA virus that can trigger the activation of intracellular DNA sensor cGAS, after which the host cells initiate a cascade of reactions that culminate in the secretion of type I interferon to restrict the viral replication. Meanwhile, the viral protein can interact with various molecules in the cGAS-STING pathway. Viruses can evade immune surveillance and maintain their replication by inhibiting the enzyme activity of cGAS and reducing the phosphorylation levels of STING, TBK1 and IRF3 and suppressing the interferon gene activation. Activators and inhibitors of the cGAS-STING pathway have yielded numerous promising research findings in vitro and in vivo pertaining to cGAS/STING-related disease models. However, there remains a dearth of small molecule modulators that have been successfully translated into clinical applications, which serves as a hurdle to be overcome in the future.
Collapse
Affiliation(s)
- Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Sun X, Yu X, Zhao Y, Xing L, Na L, Chen Z, Xiao Z, Dai H, Yu J, Long S, Wang Q, Shi X, Guan Z, Lei M, Yang Z. Cyclic diguanylate analogues: Facile synthesis, STING binding mode and anti-tumor immunity delivered by cytidinyl/cationic lipid. Eur J Med Chem 2023; 247:115053. [PMID: 36587419 DOI: 10.1016/j.ejmech.2022.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Herein 2-cyanoethoxy-N,N,N',N'-tetraisopropyl-phosphorodiamidite(10, PIII, 3.5 eq.) could synergistically react with 3',5'-dihydroxyl groups in a dinucleotide(PV) at the cyclization step for the synthesis of cyclic dinucleotides (CDNs) (c-di-GMP, cGAMP etc.) and their phosphorothioated analogues. A dynamic PIII-PV coordination mechanism has been proposed for the cyclization procedure which is confirmed by the variant 31P NMR data and molecular simulation. Among the mono-phosphorothioated CDNs, two stereoisomers showed different capacity for STING activation and the reason was predicted by molecular modeling. While compound 12b1 showed most potent ability to elicit cytokines (IFNβ, IL-6, Cxcl9 and Cxcl10) induction compared to another stereoisomer. Also, 12b1 significantly inhibited the tumor growth in the EO771 model with both 0.1 μg (i.t.) and 2 μg (i.v.) administration through the aid of a Mix delivery system developed by our group, and achieved a 31% long-term survival rate of tumor-bearing mice. 12b1/Mix significantly improved the percentage of CD8+ or CD4+ effector memory T (Tem, CD44highCD62Llow) cells and CD8+ central memory T (Tcm, CD44highCD62Lhigh) cells in the blood of EO771 mice, inducing the immune memory against EO771 tumor cells. Relatively lower dose regimens of 12b1(0.1 μg)/Mix displayed better tumor suppression by more potent STING pathway activation and higher levels of cytokines induction in the tumor.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaotong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luxin Na
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhangping Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hong Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijie Long
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Quanxin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Shen A, Li X, Zhang Y, Ma J, Xiao R, Wang X, Song Z, Liu Z, Geng M, Zhang A, Xie Z, Ding C. Structure−Activity relationship study of benzothiophene oxobutanoic acid analogues leading to novel stimulator of interferon gene (STING) agonists. Eur J Med Chem 2022; 241:114627. [DOI: 10.1016/j.ejmech.2022.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
|
9
|
Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-Translational Modifications of STING: A Potential Therapeutic Target. Front Immunol 2022; 13:888147. [PMID: 35603197 PMCID: PMC9120648 DOI: 10.3389/fimmu.2022.888147] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic-reticulum resident protein, playing essential roles in immune responses against microbial infections. However, over-activation of STING is accompanied by excessive inflammation and results in various diseases, including autoinflammatory diseases and cancers. Therefore, precise regulation of STING activities is critical for adequate immune protection while limiting abnormal tissue damage. Numerous mechanisms regulate STING to maintain homeostasis, including protein-protein interaction and molecular modification. Among these, post-translational modifications (PTMs) are key to accurately orchestrating the activation and degradation of STING by temporarily changing the structure of STING. In this review, we focus on the emerging roles of PTMs that regulate activation and inhibition of STING, and provide insights into the roles of the PTMs of STING in disease pathogenesis and as potential targeted therapy.
Collapse
Affiliation(s)
- Jiaqi Kang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|