1
|
Mahardhika AB, Załuski M, Schoeder CT, Boshta NM, Schabikowski J, Perri F, Łażewska D, Neumann A, Kremers S, Oneto A, Ressemann A, Latacz G, Namasivayam V, Kieć-Kononowicz K, Müller CE. Potent, Selective Agonists for the Cannabinoid-like Orphan G Protein-Coupled Receptor GPR18: A Promising Drug Target for Cancer and Immunity. J Med Chem 2024; 67:9896-9926. [PMID: 38885438 DOI: 10.1021/acs.jmedchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in β-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| | - Michal Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Clara T Schoeder
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Nader M Boshta
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Filomena Perri
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Alexander Neumann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Sarah Kremers
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Angelo Oneto
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anastasiia Ressemann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
2
|
Teodoro R, Gündel D, Deuther-Conrad W, Kazimir A, Toussaint M, Wenzel B, Bormans G, Hey-Hawkins E, Kopka K, Brust P, Moldovan RP. Synthesis, Structure-Activity Relationships, Radiofluorination, and Biological Evaluation of [ 18F]RM365, a Novel Radioligand for Imaging the Human Cannabinoid Receptor Type 2 (CB2R) in the Brain with PET. J Med Chem 2023; 66:13991-14010. [PMID: 37816245 PMCID: PMC10614203 DOI: 10.1021/acs.jmedchem.3c01035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/12/2023]
Abstract
The development of cannabinoid receptor type 2 (CB2R) PET radioligands has been intensively explored due to the pronounced CB2R upregulation under various pathological conditions. Herein, we report on the synthesis of a series of CB2R affine fluorinated indole-2-carboxamide ligands. Compound RM365 was selected for PET radiotracer development due to its high CB2R affinity (Ki = 2.1 nM) and selectivity over CB1R (factor > 300). Preliminary in vitro evaluation of [18F]RM365 indicated species differences in the binding to CB2R (KD of 2.32 nM for the hCB2R vs KD > 10,000 nM for the rCB2R). Metabolism studies in mice revealed a high in vivo stability of [18F]RM365. PET imaging in a rat model of local hCB2R(D80N) overexpression in the brain demonstrates the ability of [18F]RM365 to reach and selectively label the hCB2R(D80N) with a high signal-to-background ratio. Thus, [18F]RM365 is a very promising PET radioligand for the imaging of upregulated hCB2R expression under pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Daniel Gündel
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Aleksandr Kazimir
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Magali Toussaint
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Barbara Wenzel
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Guy Bormans
- Radiopharmaceutical
Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Klaus Kopka
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
- The
Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| |
Collapse
|
3
|
Ueberham L, Gündel D, Kellert M, Deuther-Conrad W, Ludwig FA, Lönnecke P, Kazimir A, Kopka K, Brust P, Moldovan RP, Hey-Hawkins E. Development of the High-Affinity Carborane-Based Cannabinoid Receptor Type 2 PET Ligand [ 18F]LUZ5- d8. J Med Chem 2023; 66:5242-5260. [PMID: 36944112 PMCID: PMC10782483 DOI: 10.1021/acs.jmedchem.3c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 03/23/2023]
Abstract
The development of cannabinoid receptor type 2 (CB2R) radioligands for positron emission tomography (PET) imaging was intensively explored. To overcome the low metabolic stability and simultaneously increase the binding affinity of known CB2R radioligands, a carborane moiety was used as a bioisostere. Here we report the synthesis and characterization of carborane-based 1,8-naphthyridinones and thiazoles as novel CB2R ligands. All tested compounds showed low nanomolar CB2R affinity, with (Z)-N-[3-(4-fluorobutyl)-4,5-dimethylthiazole-2(3H)-ylidene]-(1,7-dicarba-closo-dodecaboranyl)-carboxamide (LUZ5) exhibiting the highest affinity (0.8 nM). Compound [18F]LUZ5-d8 was obtained with an automated radiosynthesizer in high radiochemical yield and purity. In vivo evaluation revealed the improved metabolic stability of [18F]LUZ5-d8 compared to that of [18F]JHU94620. PET experiments in rats revealed high uptake in spleen and low uptake in brain. Thus, the introduction of a carborane moiety is an appropriate tool for modifying literature-known CB2R ligands and gaining access to a new class of high-affinity CB2R ligands, while the in vivo pharmacology still needs to be addressed.
Collapse
Affiliation(s)
- Lea Ueberham
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Daniel Gündel
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Martin Kellert
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Peter Lönnecke
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Aleksandr Kazimir
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
- The
Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Mahardhika AB, Ressemann A, Kremers SE, Gregório Castanheira MS, Schoeder CT, Müller CE, Pillaiyar T. Design, synthesis, and structure-activity relationships of diindolylmethane derivatives as cannabinoid CB 2 receptor agonists. Arch Pharm (Weinheim) 2023; 356:e2200493. [PMID: 36437108 DOI: 10.1002/ardp.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
3,3'-Diindolylmethane (DIM), a natural product-derived compound formed upon ingestion of cruciferous vegetables, was recently described to act as a partial agonist of the anti-inflammatory cannabinoid (CB) receptor subtype CB2 . In the present study, we synthesized and evaluated a series of DIM derivatives and determined their affinities for human CB receptor subtypes in radioligand binding studies. Potent compounds were additionally evaluated in functional cAMP accumulation and β-arrestin recruitment assays. Small substituents in the 4-position of both indole rings of DIM were beneficial for high CB2 receptor affinity and efficacy. Di-(4-cyano-1H-indol-3-yl)methane (46, PSB-19837, EC50 : cAMP, 0.0144 µM, 95% efficacy compared to the full standard agonist CP55,940; β-arrestin, 0.0149 µM, 67% efficacy) was the most potent CB2 receptor agonist of the present series. Di-(4-bromo-1H-indol-3-yl)methane (44, PSB-19571) showed higher potency in β-arrestin (EC50 0.0450 µM, 61% efficacy) than in cAMP accumulation assays (EC50 0.509 µM, 85% efficacy) while 3-((1H-indol-3-yl)methyl)-4-methyl-1H-indole (149, PSB-18691) displayed a 19-fold bias for the G protein pathway (EC50 : cAMP, 0.0652 µM; β-arrestin, 1.08 µM). DIM and its analogs act as allosteric CB2 receptor agonists. These potent CB2 receptor agonists have potential as novel drugs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Anastasiia Ressemann
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Sarah E Kremers
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Mariana S Gregório Castanheira
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Clara T Schoeder
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Institute of Pharmacy, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
5
|
Kecheliev V, Spinelli F, Herde A, Haider A, Mu L, Klohs J, Ametamey SM, Ni R. Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer's disease. Front Aging Neurosci 2022; 14:1018610. [PMID: 36248003 PMCID: PMC9561934 DOI: 10.3389/fnagi.2022.1018610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. The cannabinoid type 2 receptor (CB2R) is an emerging target for neuroinflammation and therapeutics of Alzheimer's disease. Here, we aim to assess the alterations in brain CB2R levels and evaluate novel CB2R imaging tracers in the arcAß mouse model of Alzheimer's disease amyloidosis. Immunohistochemical staining for amyloid-ß deposits (6E10), microgliosis (anti-Iba1 and anti-CD68 antibodies), astrocytes (GFAP) and the anti-CB2R antibody was performed on brain slices from 17-month-old arcAß mice. Autoradiography using the CB2R imaging probes [18F]RoSMA-18-d6, [11C]RSR-056, and [11C]RS-028 and mRNA analysis were performed in brain tissue from arcAß and non-transgenic littermate (NTL) mice at 6, 17, and 24 months of age. Specific increased CB2R immunofluorescence intensities on the increased number of GFAP-positive astrocytes and Iba1-positive microglia were detected in the hippocampus and cortex of 17-month-old arcAß mice compared to NTL mice. CB2R immunofluorescence was higher in glial cells inside 6E10-positive amyloid-ß deposits than peri-plaque glial cells, which showed low background immunofluorescence in the hippocampus and cortex of 17-month-old arcAß mice. Ex vivo autoradiography showed that the specific binding of [18F]RoSMA-18-d6 and [11C]RSR-056 was comparable in arcAß and NTL mice at 6, 17, and 24 months of age. The level of Cnr2 mRNA expression in the brain was not significantly different between arcAß and NTL mice at 6, 17, or 24 months of age. In conclusion, we demonstrated pronounced specific increases in microglial and astroglial CB2R expression levels in a mouse model of AD-related cerebral amyloidosis, emphasizing CB2R as a suitable target for imaging neuroinflammation.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Francesco Spinelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Adrienne Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Achi Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Simon M. Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|