1
|
Sun Y, Zhang J, Liu R, Gao Z, Wu X, Liu N, Zhang H, Li K, Luo Z, Liu R, Qin Q, Yin W, Su X, Zhao D, Cheng M. Discovery of highly potent triazole derivatives with broad-spectrum antifungal activity based on Iodiconazole. Eur J Med Chem 2024; 280:116949. [PMID: 39406120 DOI: 10.1016/j.ejmech.2024.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/25/2024]
Abstract
The widespread use of broad-spectrum antibiotics, the growing number of immunocompromised individuals, and the emergence of drug-resistant strains have resulted in the increasing incidence and mortality of invasive fungal infections. Azole drugs are the primary treatment for invasive fungal infections, and Iodiconazole is a potent azole drug with strong antifungal activity, but its stability is poor. In order to improve stability, a series of triazole compounds containing ethynyl group were designed and synthesized. Most of the compounds showed strong inhibitory activity against pathogenic fungi, among which compound 20l showed excellent inhibitory activity against pathogenic fungi and drug-resistant fungi. Importantly, and the stability of 20l (T1/2 = 30.2 min) was obviously improved compared with Iodiconazole (T1/2 = 4.39 min). In addition, the preferred compound 20l can prevent fungal phase transition and the formation of fungal biofilm, and show satisfactory fungicidal activity. In addition, the compound 20l was almost non-toxic to mammalian HUVEC cell and 293T cell. In vivo pharmacokinetic studies showed that 20l had acceptable pharmacokinetic properties. These results strongly demonstrate that compound 20l was worth further investigation as a potential antifungal inhibitor.
Collapse
Affiliation(s)
- Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jiachen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Rui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xudong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Kejian Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zirui Luo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Rongrong Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xin Su
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
2
|
da Silva Alves AI, de Sousa BR, da Silva JWLM, Veras DL, Brayner FA, Alves LC, Mendonça Junior FJB, Inácio CP, Neves RP. Synergistic antifungal effect of thiophene derivative as an inhibitor of fluconazole-resistant Candida spp. biofilms. Braz J Microbiol 2024; 55:3667-3677. [PMID: 39110398 PMCID: PMC11711837 DOI: 10.1007/s42770-024-01470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 01/11/2025] Open
Abstract
Candida species resistant to fluconazole have raised concern in the scientific medical community due to high mortality in patients with invasive disease. In developing countries, such as Brazil, fluconazole is the most commonly used antifungal, and alternative treatments are expensive or not readily available. Furthermore, the occurrence of biofilms is common, coupled with their inherent resistance to antifungal therapies and the host's immune system, these microbial communities have contributed to making infections caused by these yeasts an enormous clinical challenge. Therefore, there is an urgent need to develop alternative medicines, which surpass the effectiveness of already used therapies, but which are also effective against biofilms. Therefore, the present study aimed to describe for the first time the antifungal and antibiofilm action of the derivative 2-amino-5,6,7,8-tetrahydro-4 H-cyclohepta[b]thiophene-3-isopropyl carboxylate (2AT) against clinical strains of Candida spp. resistant to fluconazole (FLZ). When determining the minimum inhibitory concentrations (MIC), it was found that the compound has antifungal action at concentrations of 100 to 200 µg/mL, resulting in 100% inhibition of yeast cells. Its synergistic effect with the drug FLZ was also observed. The antibiofilm action of the compound in subinhibitory concentrations was detected, alone and in association with FLZ. Moreover, using scanning electron microscopy, it was observed that the compound 2AT in isolation was capable of causing significant ultrastructural changes in Candida. Additionally, it was also demonstrated that the compound 2AT acts by inducing characteristics compatible with apoptosis in these yeasts, such as chromatin condensation, when visualized by transmission electron microscopy, indicating the possible mechanism of action of this molecule. Furthermore, the compound did not exhibit toxicity in J774 macrophage cells up to a concentration of 4000 µg/mL. In this study, we identify the 2AT derivative as a future alternative for invasive candidiasis therapy, in addition, we highlighted the promise of a strategy combined with fluconazole in combating Candida infections, especially in cases of resistant isolates.
Collapse
Affiliation(s)
| | - Bruna Rodrigues de Sousa
- Department of Mycology, Medical Mycology Laboratory, Federal University of Pernambuco, Av. Moraes Rego s/n, University City, Recife, PE, 50670-901, Brazil
| | | | - Dyana Leal Veras
- Aggeu Magalhães Research Center (FIOCRUZ) and Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, 50740-465, Brazil
| | - Fábio André Brayner
- Aggeu Magalhães Research Center (FIOCRUZ) and Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, 50740-465, Brazil
| | - Luiz Carlos Alves
- Aggeu Magalhães Research Center (FIOCRUZ) and Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, 50740-465, Brazil
| | | | - Cicero Pinheiro Inácio
- Department of Mycology, Medical Mycology Laboratory, Federal University of Pernambuco, Av. Moraes Rego s/n, University City, Recife, PE, 50670-901, Brazil
| | - Rejane Pereira Neves
- Department of Mycology, Medical Mycology Laboratory, Federal University of Pernambuco, Av. Moraes Rego s/n, University City, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
3
|
Yan Z, Li Q, Li X, Wang H, Zhao D, Yu H, Guo M, Wang Y, Wang X, Xu H, Mou Y, Hou Z, Guo C. Discovery of Novel α,β-Unsaturated Amide Derivatives as Candidate Antifungals to Overcome Fungal Resistance. J Med Chem 2024. [PMID: 39077891 DOI: 10.1021/acs.jmedchem.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
In our previous study, coumarin-containing CYP51 inhibitor A32 demonstrated potent antiresistance activity. However, compound A32 demonstrated unsatisfied metabolic stability, necessitating modifications to overcome these limitations. In this study, α,β-unsaturated amides were used to replace the unstable coumarin ring, which increased metabolic stability by four times while maintaining antifungal activity, including activity against resistant strains. Subsequently, the sterol composition analysis and morphological observation experiments indicated that the target of these novel compounds is lanosterol 14α-demethylase (CYP51). Meanwhile, biofilm growth was inhibited and resistance genes (ERG11, CDR1, CDR2, and MDR1) expression was downregulated to find out how the antiresistance works. Importantly, compound C07 demonstrated the capacity to stimulate reactive oxygen species, thus displaying potent fungicidal activity. Moreover, C07 exhibited encouraging effectiveness in vivo following intraperitoneal administration. Additionally, the most potent compound C07 showed satisfactory pharmacokinetic properties and low toxicity. These α,β-unsaturated amide derivatives, particularly C07, are potential candidates for treating azole-resistant candidiasis.
Collapse
Affiliation(s)
- Zhongzuo Yan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qi Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Li
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanlin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongze Zhao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Yu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yitong Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanhua Mou
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Gao Z, Zhang J, Li K, Sun Y, Wu X, Zhang G, Liu R, Liu R, Zhao D, Cheng M. Design, synthesis and evaluation of 2-phenylpyrimidine derivatives as novel antifungal agents targeting CYP51. RSC Med Chem 2024; 15:492-505. [PMID: 38389880 PMCID: PMC10880905 DOI: 10.1039/d3md00589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024] Open
Abstract
Invasive fungal infections, with high morbidity and mortality, have become one of the most serious threats to human health. There are a few kinds of clinical antifungal drugs but large amounts of them are used, so there is an urgent need for a new structural type of antifungal drug. In this study, we carried out three rounds of structural optimisation and modification of the compound YW-01, which was obtained from the preliminary screening of the group, by using the strategy of scaffold hopping. A series of novel phenylpyrimidine CYP51 inhibitors were designed and synthesised. In vitro antifungal testing showed that target compound C6 exhibited good efficacy against seven common clinically susceptible strains, which was significantly superior to the clinical first-line drug fluconazole. Subsequently in vitro tests on metabolic stability and cytotoxicity revealed that C6 was safe and stable for hepatic microsomal function. Finally, C6 warranted further exploration as a possible novel structural type of CYP51 inhibitor.
Collapse
Affiliation(s)
- Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Jiachen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Kejian Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Xudong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Guoqi Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Rongrong Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Rui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| |
Collapse
|
5
|
Liu JC, Yang J, Lei SX, Wang MF, Ma YN, Yang R. Natural phytoalexins inspired the discovery of new biphenyls as potent antifungal agents for treatment of invasive fungal infections. Eur J Med Chem 2023; 261:115842. [PMID: 37788549 DOI: 10.1016/j.ejmech.2023.115842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
With the aim of discovering novel and effective antifungal agents derived from natural sources, a series of new biphenyls based on natural biphenyl phytoalexins were designed, synthesized and evaluated for their antifungal activities against four invasive fungi. By modifying the two benzene rings of noraucuparin, a well-known biphenyl phytoantitoxin, some promising compounds with remarkable antifungal activity were discovered. Notably, compounds 23a, 23e and 23h exhibited potent activities and a broad antifungal spectrum with low MICs of 0.25-16 μg/mL, which were 8-256-fold more potent than that of the lead compound noraucuparin. Particularly, they displayed comparable potency to the positive control amphotericin B against Cryptococcus neoformans. Some interesting structure-activity relationships have also been discussed. Preliminary mechanism studies revealed that compound 23h might achieve its rapid fungicidal activity by disrupting the fungal cell membrane. Moreover, compound 23h exhibited significant inhibition against some virulence factors of Cryptococcus neoformans, low toxicity to normal human cells, as well as favorable pharmacokinetic and drug-like properties. The above results evidenced that the development of new antifungal candidates derived from natural phytoalexins was a bright and promising strategy.
Collapse
Affiliation(s)
- Jian-Chuan Liu
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shu-Xin Lei
- College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Ming-Fan Wang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yan-Ni Ma
- Henan Academy of Sciences, Zhengzhou, 450002, China; Medical School, Huanghe Science & Technology University, Zhengzhou, 450063, China
| | - Rui Yang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
6
|
Yan Z, Huang Y, Zhao D, Li Z, Wang X, Guo M, Wei Y, Wang Y, Mou Y, Hou Z, Guo C. Developing Novel Coumarin-Containing Azoles Antifungal Agents by the Scaffold Merging Strategy for Treating Azole-Resistant Candidiasis. J Med Chem 2023; 66:13247-13265. [PMID: 37725043 DOI: 10.1021/acs.jmedchem.3c01254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The extensive use of antifungal drugs has resulted in severe drug resistance, making clinical treatment of fungal infections more difficult. Biofilm inhibitors can overcome drug resistance by inhibiting fungal biofilm formation. In this study, some coumarins with antibiofilm activity were merged into CYP51 inhibitors to produce novel molecules possessing potent antiresistance activity. As expected, most compounds exhibited excellent in vitro antifungal activity against pathogenic fungi, especially fluconazole-resistant candidiasis. Then, their mechanism was confirmed by sterol composition analysis and morphological observation. Biofilm inhibition and down-regulation of resistance-related genes were employed to confirm the compounds' antiresistance mechanisms. Significantly, compound A32 demonstrated fungicidal activity against fluconazole-resistant strain 904. Most importantly, compound A32 showed potent in vivo antifungal activity against pathogenic fungi and fluconazole-resistant strains. Preliminary pharmacokinetic and toxicity tests demonstrated that the compounds possessed favorable druggability. Taken together, compound A32 represents a promising lead to develop novel antifungal agents for treating azole-resistant candidiasis.
Collapse
Affiliation(s)
- Zhongzuo Yan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanxiu Huang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongze Zhao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zengye Li
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wei
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yitong Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanhua Mou
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Osmaniye D, Baltacı Bozkurt N, Levent S, Benli Yardımcı G, Sağlık BN, Ozkay Y, Kaplancıklı ZA. Synthesis, Antifungal Activities, Molecular Docking and Molecular Dynamic Studies of Novel Quinoxaline-Triazole Compounds. ACS OMEGA 2023; 8:24573-24585. [PMID: 37457491 PMCID: PMC10339406 DOI: 10.1021/acsomega.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Uncontrolled use of antifungal drugs affects the development of resistance to existing drugs. Azole antifungals constitute a large part of antifungal therapy. Therefore, there is a need for new azole antifungals. Within the scope of this study, 17 new triazole derivative compounds were synthesized. Structure determinations were clarified by spectroscopic analysis methods (1H-NMR, 13C-NMR, HRMS). In addition, structure matching was completed using two-dimensional NMR techniques, HSQC, HMBC and NOESY. The antifungal effects of the compounds were evaluated on Candida strains by means of in vitro method. Compound 5d showed activity against Candida glabrata with a MIC90 = 2 μg/mL. Compound 5d showed activity against Candida krusei with a MIC90 = 2 μg/mL. This activity value, which is higher than fluconazole, is promising. In addition, the biofilm inhibition percentages of the compounds were calculated. Molecular docking and molecular dynamics simulations performed with compound 5d are in harmony with activity studies.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Nurnehir Baltacı Bozkurt
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gamze Benli Yardımcı
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Ozkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
8
|
Xie F, Hao Y, Bao J, Liu J, Liu Y, Wang R, Chi X, Chai X, Wang T, Yu S, Jin Y, Yan L, Zhang D, Ni T. Design, synthesis, and in vitro evaluation of novel antifungal triazoles containing substituted 1,2,3-triazole-methoxyl side chains. Bioorg Chem 2022; 129:106216. [DOI: 10.1016/j.bioorg.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022]
|
9
|
2-Benzyl-3-morpholino-7-(thiophen-2-yl)-6-(thiophen-2-ylmethyl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one. MOLBANK 2022. [DOI: 10.3390/m1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The new polyheterocyclic compound 2-benzyl-3-morpholino-7-(thiophen-2-yl)-6-(thiophen-2-ylmethyl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one (1) was synthesized via a one-pot process involving an Ugi-Zhu three-component reaction coupled to a cascade aza-Diels-Alder cycloaddition/N-acylation/decarboxylation/dehydration process, using toluene as the solvent, ytterbium (III) triflate as the Lewis acid catalyst, and microwave-dielectric heating to increase the overall yield by up to 73%, while decreasing the reaction time to less than one hour. Product 1 was fully characterized by its physicochemical properties and using spectroscopic techniques (IR, HRMS and NMR).
Collapse
|