1
|
Wang K, Zhang X, Hu Y, Guo J, Shen G, Zhang K, Jiang S, Wang T. Discovery of novel phenyl urea SHP2 inhibitors with anti-colon cancer and potential immunomodulatory effects. Eur J Med Chem 2025; 281:117036. [PMID: 39541871 DOI: 10.1016/j.ejmech.2024.117036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2) is a non-receptor-type protein tyrosine phosphatase (PTP), which is recognized as potential and attractive cancer therapeutic target. Currently, no SHP2 inhibitors have been approved for clinical use, and colorectal cancer (CRC) cells exhibited frequent resistance to reported SHP2 inhibitors, such as SHP099 and TNO155. Herein, we reported our discovery and optimization of phenyl urea as novel SHP2 inhibitors. A8, the most potential SHP2 inhibitor, exhibited great antiproliferative activities against SHP099/TNO155-insensitive tumor cell lines, and rescued PD-L1-mediated immunosuppression. A8 significantly suppressed in vivo tumor growth in a CT26 mouse model and activated immunomodulatory effects in tumor microenvironment. Our work demonstrated that A8 has the potential to be a lead compound for the further development of SHP2 inhibitor and the treatment of CRC.
Collapse
Affiliation(s)
- Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingxin Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiazheng Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guoqing Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Liu L, Yu K, Yu J, Tao W, Wei Y. MiR-133 promotes the multidrug resistance of acute myeloid leukemia cells (HL-60/ADR) to daunorubicin. Cytotechnology 2024; 76:833-846. [PMID: 39435426 PMCID: PMC11490624 DOI: 10.1007/s10616-024-00656-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
This study aimed to explore the role and molecular mechanism of miR-133 in multidrug resistance in acute myeloid leukemia (AML) and provide a new theoretical basis for the treatment and prognosis of AML patients. We performed experiments at the cellular level. RT‒qPCR and Western blotting were used to detect gene and protein expression; cell viability was measured with CCK-8 assays; apoptosis was detected via flow cytometry; and a dual-luciferase reporter gene assay was used to verify the binding between miR-133 and CXCL12. In this study, we found that miR-133 was upregulated in HL-60/ADR multidrug-resistant cells. Functionally, the inhibition of miR-133 alleviated the resistance of HL-60/ADR cells to daunorubicin (DNR). After inhibiting miR-133 in HL-60/ADR cells treated with DNR, the expression of the intracellular drug resistance-related proteins MRP562 and P-gp was inhibited, cell proliferation decreased, and apoptosis increased. Mechanistically, the NF-κB signaling pathway regulates the expression of miR-133 in HL-60/ADR cells, and the targeting of CXCL12 by miR-133 enhances the resistance of HL-60/ADR cells to DNR. In conclusion, the NF-κB signaling pathway regulates the expression of miR-133, and inhibiting miR-133 expression can target CXCL12 to increase the sensitivity of HL-60/ADR cells to DNR.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Kun Yu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingxing Yu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Wei Tao
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Yueping Wei
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| |
Collapse
|
3
|
Ma C, Cui S, Xu R. Developments of Fms-like Tyrosine Kinase 3 Inhibitors as Anticancer Agents for AML Treatment. Curr Med Chem 2024; 31:4657-4686. [PMID: 38204232 DOI: 10.2174/0109298673277543231205072556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated gene in acute myeloid leukemia. As a receptor tyrosine kinase (RTK), FLT3 plays a role in the proliferation and differentiation of hematopoietic stem cells. As the most frequent molecular alteration in AML, FLT3 has drawn the attention of many researchers, and a lot of small molecule inhibitors targeting FLT3 have been intensively investigated as potential drugs for AML therapy. METHODS In this paper, PubMed and SciFinder® were used as a tool; the publications about "FLT3 inhibitor" and "Acute myeloid leukemia" were surveyed from 2014 to the present with an exclusion of those published as patents. RESULTS In this study, the structural characterization and biological activities of representative FLT3 inhibitors were summarized. The major challenges and future directions for further research are discussed. CONCLUSION Recently, numerous FLT3 inhibitors have been discovered and employed in FLT3-mutated AML treatment. In order to overcome the drug resistance caused by FLT3 mutations, screening multitargets FLT3 inhibitors has become the main research direction. In addition, the emergence of irreversible FLT3 inhibitors also provides new ideas for discovering new FLT3 inhibitors.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Jinan 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Divar M, Edraki N, Damghani T, Moosavi F, Mohabbati M, Alipour A, Pirhadi S, Saso L, Khabnadideh S, Firuzi O. Novel spiroindoline quinazolinedione derivatives as anticancer agents and potential FLT3 kinase inhibitors. Bioorg Med Chem 2023; 90:117367. [PMID: 37348260 DOI: 10.1016/j.bmc.2023.117367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Despite considerable recent progress in therapeutic strategies, cancer still remains one of the leading causes of death. Molecularly targeted therapies, in particular those focused on blocking receptor tyrosine kinases have produced promising outcomes in recent years. In this study, a new series of spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (5a-5l) were synthesized and evaluated as potential kinase inhibitors with anticancereffects. The anti-proliferative activity was measured by MTT assay, while the cell cycle was studied using flow cytometry. Moreover, kinase inhibition profiles of the most promising compounds were assessed against a panel of 25 oncogenic kinases. Compounds 5f,5g,5i, and 5jshowed anti-proliferative effect against EBC-1, A549, and HT-29 solid tumor models in addition to leukemia cell line K562. In particular, compound 5f, bearing 4-methylphenyl pendant on the isatin ring displayed considerable potency with IC50 values of 2.4 to 13.4 μM against cancer cells. The most potent derivatives also altered the distribution of cells in different phases of cell cycle and increased the sub-G1 phase cells in K562 cells. Moreover, kinase inhibition assays identified FLT3 kinase was as the primary targetof these derivatives. Compound 5f at 25 μM concentration showed inhibitory activities of 55% and 62% against wild-type FLT3 and its mutant, D835Y, respectively. Finally, the docking and simulation studies revealed the important interactions of compound 5f with wild type and mutant FLT3. The results of this study showed that some novel spiroindoline quinazolinedione compounds could be potential candidates for further development as novel targeted anticancer agents.
Collapse
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Alipour
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, Rome, Italy
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Barreca M, Spanò V, Rocca R, Bivacqua R, Gualtieri G, Raimondi MV, Gaudio E, Bortolozzi R, Manfreda L, Bai R, Montalbano A, Alcaro S, Hamel E, Bertoni F, Viola G, Barraja P. Identification of pyrrolo[3',4':3,4]cyclohepta[1,2-d][1,2]oxazoles as promising new candidates for the treatment of lymphomas. Eur J Med Chem 2023; 254:115372. [PMID: 37068384 PMCID: PMC10287037 DOI: 10.1016/j.ejmech.2023.115372] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Unsatisfactory outcomes for relapsed/refractory lymphoma patients prompt continuing efforts to develop new therapeutic strategies. Our previous studies on pyrrole-based anti-lymphoma agents led us to synthesize a new series of twenty-six pyrrolo[3',4':3,4]cyclohepta[1,2-d] [1,2]oxazole derivatives and study their antiproliferative effects against a panel of four non-Hodgkin lymphoma cell lines. Several candidates showed significant anti-proliferative effects, with IC50's reaching the sub-micromolar range in at least one cell line, with compound 3z demonstrating sub-micromolar growth inhibitory effects towards the entire panel. The VL51 cell line was the most sensitive, with an IC50 value of 0.10 μM for 3z. Our earlier studies had shown that tubulin was a prominent target of many of our oxazole derivatives. We therefore examined their effects on tubulin assembly and colchicine binding. While 3u and 3z did not appear to target tubulin, good activity was observed with 3d and 3p. Molecular docking and molecular dynamics simulations allowed us to rationalize the binding mode of the synthesized compounds toward tubulin. All ligands exhibited a better affinity for the colchicine site, confirming their specificity for this binding pocket. In particular, a better affinity and free energy of binding was observed for 3d and 3p. This result was confirmed by experimental data, indicating that, although both 3d and 3p significantly affected tubulin assembly, only 3d showed activity comparable to that of combretastatin A-4, while 3p was about 4-fold less active. Cell cycle analysis showed that compounds 3u and especially 3z induced a block in G2/M, a strong decrease in S phase even at low compound concentrations and apoptosis through the mitochondrial pathway. Thus, the mechanism of action of 3u and 3z remains to be elucidated. Very high selectivity toward cancer cells and low toxicity in human peripheral blood lymphocytes were observed, highlighting the good potential of these agents in cancer therapy and encouraging further exploration of this compound class to obtain new small molecules as effective lymphoma treatments.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Dipartimento di Medicina Sperimentale e Clinica, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Gianmarco Gualtieri
- Dipartimento di Scienze della Salute, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Roberta Bortolozzi
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35127, Padova, Italy; Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35127, Padova, Italy
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35127, Padova, Italy; Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
6
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
7
|
Ibba R, Corona P, Nonne F, Caria P, Serreli G, Palmas V, Riu F, Sestito S, Nieddu M, Loddo R, Sanna G, Piras S, Carta A. Design, Synthesis, and Antiviral Activities of New Benzotriazole-Based Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16030429. [PMID: 36986528 PMCID: PMC10054465 DOI: 10.3390/ph16030429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Several human diseases are caused by enteroviruses and are currently clinically untreatable, pushing the research to identify new antivirals. A notable number of benzo[d][1,2,3]triazol-1(2)-yl derivatives were designed, synthesized, and in vitro evaluated for cytotoxicity and antiviral activity against a wide spectrum of RNA positive- and negative-sense viruses. Five of them (11b, 18e, 41a, 43a, 99b) emerged for their selective antiviral activity against Coxsackievirus B5, a human enteroviruses member among the Picornaviridae family. The EC50 values ranged between 6 and 18.5 μM. Among all derivatives, compounds 18e and 43a were interestingly active against CVB5 and were selected to better define the safety profile on cell monolayers by transepithelial resistance test (TEER). Results indicated compound 18e as the hit compound to investigate the potential mechanism of action by apoptosis assay, virucidal activity test, and the time of addition assay. CVB5 is known to be cytotoxic by inducing apoptosis in infected cells; in this study, compound 18e was proved to protect cells from viral infection. Notably, cells were mostly protected when pre-treated with derivative 18e, which had, however, no virucidal activity. From the performed biological assays, compound 18e turned out to be non-cytotoxic as well as cell protective against CVB5 infection, with a mechanism of action ascribable to an interaction on the early phase of infection, by hijacking the viral attachment process.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Paola Corona
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Francesca Nonne
- GSK Vaccine Institute for Global Health GSK, Via Fiorentina, 1, 53100 Siena, Italy;
| | - Paola Caria
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Gabriele Serreli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Vanessa Palmas
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Department of Chemistry, Biomedicinskt Centrum, BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Roberta Loddo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
- Correspondence: (G.S.); (S.P.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Correspondence: (G.S.); (S.P.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| |
Collapse
|
8
|
Bivacqua R, Barreca M, Spanò V, Raimondi MV, Romeo I, Alcaro S, Andrei G, Barraja P, Montalbano A. Insight into non-nucleoside triazole-based systems as viral polymerases inhibitors. Eur J Med Chem 2023; 249:115136. [PMID: 36708678 DOI: 10.1016/j.ejmech.2023.115136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Viruses have been recognized as the etiological agents responsible for many pathological conditions ranging from asymptomatic infections to serious diseases, even leading to death. For this reason, many efforts have been made to identify selective viral targets with the aim of developing efficient therapeutic strategies, devoid of drug-resistance issues. Considering their crucial role in the viral life cycle, polymerases are very attractive targets. Among the classes of compounds explored as viral polymerases inhibitors, here we present an overview of non-nucleoside triazole-based compounds identified in the last fifteen years. Furthermore, the structure-activity relationships (SAR) of the different chemical entities are described in order to highlight the key chemical features required for the development of effective antiviral agents.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000, Belgium
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
9
|
Bhat AA, Singh I, Tandon N, Tandon R. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur J Med Chem 2023; 246:114954. [PMID: 36481599 DOI: 10.1016/j.ejmech.2022.114954] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Pyrrolidine molecules are a significant class of synthetic and natural plant metabolites, which show the diversity of pharmacological activities. An extensive variety of synthetic pyrrolidine compounds with numerous derivatization like spirooxindole, thiazole, metal complexes, coumarin, etc have revealed significant anticancer activity. Pyrrolidine molecules are found not only as potential anticancer candidates but also retain the lowest side effects. Depending upon the diverse substitution patterns of the derivatives, these molecules have demonstrated an incredible ability to regulate the various targets to give excellent anti-proliferative activities. Taking these into consideration, efforts have been taken by the scientific fraternity to design and develop a potent anticancer scaffold with negligible side effects. In the present review, we cover the latest advancements in the synthesis of pyrrolidine molecules which have promising anticancer activity toward numerous cancer cell lines. Additionally, it also highlights the effectiveness of derivatives via elucidation of Structural-Activity-Relationship (SAR) which is discussed in detail.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Runjhun Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
10
|
Mortazavi M, Divar M, Damghani T, Moosavi F, Saso L, Pirhadi S, Khoshneviszadeh M, Edraki N, Firuzi O. Study of the anticancer effect of new quinazolinone hydrazine derivatives as receptor tyrosine kinase inhibitors. Front Chem 2022; 10:969559. [PMID: 36465863 PMCID: PMC9713320 DOI: 10.3389/fchem.2022.969559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023] Open
Abstract
The advent of novel receptor tyrosine kinase inhibitors has provided an important therapeutic tool for cancer patients. In this study, a series of quinazolinone hydrazide triazole derivatives were designed and synthesized as novel MET (c-MET) receptor tyrosine kinase inhibitors. The antiproliferative effect of the synthesized compounds was examined against EBC-1, A549, HT-29 and U-87MG cells by MTT assay. MET kinase inhibitory effect was tested by a Homogenous Time Resolved Fluorescence (HTRF) assay. The antiproliferative effect of compounds in a three-dimensional spheroid culture was studied by acid phosphatase (APH) assay, while apoptosis induction was examined by Hoechst 33258 staining. We found that compound CM9 bearing p-bromo benzyl pendant inhibited MET kinase activity at the concentrations of 10-50 μM (% Inhibition = 37.1-66.3%). Compound CM9 showed antiproliferative effect against cancer cells, in particular lung cancer cells with MET amplification (EBC-1) with an IC50 value of 8.6 μM. Moreover, this derivative inhibited cell growth in spheroid cultures in a dose-dependent manner and induced apoptosis in cancer cells. Assessment of inhibitory effect of CM9 against a panel of 18 different protein kinases demonstrated that this compound also inhibits ALK, AXL, FGFR1, FLT1 (VEGFR1) and FLT4 (VEGFR3) more than 50% at 25 μM. Finally, molecular docking and dynamics simulation corroborated the experimental findings and showed critical structural features for the interactions between CM9 and target kinases. The findings of this study present quinazolinone hydrazide triazole derivatives as kinase inhibitors with considerable anticancer effects.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Barreca M, Ingarra AM, Raimondi MV, Spanò V, Piccionello AP, De Franco M, Menilli L, Gandin V, Miolo G, Barraja P, Montalbano A. New tricyclic systems as photosensitizers towards triple negative breast cancer cells. Arch Pharm Res 2022; 45:806-821. [PMID: 36399284 PMCID: PMC9701179 DOI: 10.1007/s12272-022-01414-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Nineteen pyrrolo[1,2-h][1,7]naphthyridinones and pyrido[2,3-c]pyrrolo[1,2-a]azepinones were synthesized as new tricyclic systems in which the pyridine ring is annelated to the 6,7-dihydroindolizin-8(5H)-one and 5,6,7,8-tetrahydro-9H-pyrrole[1,2-a]azepine-9-one moieties to obtain potential photosensitizing agents. They were tested for their photoantiproliferative activity on a triple-negative breast cancer cell line, MDA-MB-231, in the dark and under UVA light (2.0 J/cm2). We demonstrated that their toxicity, only when exposed to light, was primarily due to the generation of reactive oxygen species while their photodegradation products were not responsible for their activity. The most active compounds exhibited photocytotoxicity with IC50 values at low micromolar level inducing a decrease in the intracellular content of thiol, thus triggering cancer cell death through apoptosis. All the pyridone derivatives revealed to be pure photosensitizers with preferential photocytotoxic activity towards cancerous over healthy cells. Altogether, the results obtained confirm pyrrolo[1,2-h][1,7]naphthyridinones and pyrido[2,3-c]pyrrolo[1,2-a]azepinones as promising photosensitisers against triple-negative breast cancer.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Angela Maria Ingarra
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy
| | - Luca Menilli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy.
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
12
|
Zhang X, Sun Y, Huang H, Wang X, Wu T, Yin W, Li X, Wang L, Gu Y, Zhao D, Cheng M. Identification of novel indole derivatives as highly potent and efficacious LSD1 inhibitors. Eur J Med Chem 2022; 239:114523. [PMID: 35732082 DOI: 10.1016/j.ejmech.2022.114523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/04/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is a FAD-dependent histone demethylase to catalyze the demethylation of H3K4 and H3K9 and thus is an attractive target for therapeutic cancer. Starting with a high micromolar compound 17i, structure-based optimization of novel indole derivatives is described by a bioelectronic isosteric strategy. Grounded by molecular modeling, medicinal chemistry has efficiently yielded low nanomolar LSD1 inhibitors. One of the compounds, B35, exhibited excellent LSD1 inhibition (IC50 = 0.050 ± 0.005 μM) and anti-proliferation against A549 cells (IC50 = 0.74 ± 0.14 μM). The further PK studies indicated compound B35 possessed favorable metabolic stability, in which the plasma t1/2 of p.o. and i.v. were 6.27 ± 0.72 h and 8.78 ± 1.31 h, respectively. Additionally, inhibitor B35 shows a strong antitumor effect and good safety in vivo. Meanwhile, compound B35 regulated genes are closely associated with transcriptional dislocation in cancer and PI3K/AKT pathway involving IGFBP3. Taken together, B35 could be a potent LSD1 inhibitor for further drug development.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Hailan Huang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinran Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, 102488, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Xiaojia Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Lin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Yanting Gu
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China.
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| |
Collapse
|
13
|
Barreca M, Spanò V, Rocca R, Bivacqua R, Abel AC, Maruca A, Montalbano A, Raimondi MV, Tarantelli C, Gaudio E, Cascione L, Rinaldi A, Bai R, Steinmetz M, Prota A, Alcaro S, Hamel E, Bertoni F, Barraja P. Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: Further chemical modifications and potential therapeutic effects against lymphomas. Eur J Med Chem 2022; 243:114744. [DOI: 10.1016/j.ejmech.2022.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
|
14
|
Labbozzetta M, Barreca M, Spanò V, Raimondi MV, Poma P, Notarbartolo M, Barraja P, Montalbano A. Novel insights on [1,2]oxazolo[5,4-e]isoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev Res 2022; 83:1331-1341. [PMID: 35749723 PMCID: PMC9540667 DOI: 10.1002/ddr.21962] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023]
Abstract
A series of [1,2]oxazolo[5,4-e]isoindole derivatives was evaluated against HL-60 cell line and its multidrug resistance (MDR) variant, HL-60R, resistant to doxorubicin and to other P-gp substrates by overexpressing the efflux pump. They displayed antiproliferative activities, with IC50 values ranging from 0.02 to 5.5 µM. In particular, the newly synthesized compound 4k produced synergistic effects in terms of cell growth inhibition and cell death induction either in combination with a Vinca alkaloid, Vinblastine, and a Taxane, Paclitaxel in HL-60R cells. The study of the mechanism of action indicated that all compounds showed antimitotic activity through inhibition of tubulin polymerization. Thus, [1,2]oxazoles could represent a valuable tool to overcome MDR mechanism, confirming the potential use of this class of compounds.
Collapse
Affiliation(s)
- Manuela Labbozzetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Paola Poma
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Monica Notarbartolo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| |
Collapse
|
15
|
Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. Eur J Med Chem 2022; 238:114422. [DOI: 10.1016/j.ejmech.2022.114422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023]
|
16
|
Benzothiazole and Chromone Derivatives as Potential ATR Kinase Inhibitors and Anticancer Agents. Molecules 2022; 27:molecules27144637. [PMID: 35889508 PMCID: PMC9324009 DOI: 10.3390/molecules27144637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Despite extensive studies and the great variety of existing anticancer agents, cancer treatment remains an aggravating and challenging problem. Therefore, the development of novel anticancer drugs with a better therapeutic profile and fewer side effects to combat this persistent disease is still necessary. In this study, we report a novel series of benzothiazole and chromone derivatives that were synthesized and evaluated for their anticancer activity as an inhibitor of ATR kinase, a master regulator of the DDR pathway. The cell viability of a set of 25 compounds was performed using MTT assay in HCT116 and HeLa cell lines, involving 72 h incubation of the compounds at a final concentration of 10 µM. Cells incubated with compounds 2c, 7h and 7l were found to show viability ≤50%, and were taken forward for dose–response studies. Among the tested compounds, three of them (2c, 7h and 7l) showed higher potency, with compound 7l exhibiting the best IC50 values in both the cell lines. Compounds 2c and 7l were found to be equally cytotoxic towards both the cell lines, namely, HCT116 and HeLa, while compound 7h showed better cytotoxicity towards HeLa cell line. For these three compounds, an immunoblot assay was carried out in order to analyze the inhibition of phosphorylation of Chk1 at Ser 317 in HeLa and HCT116 cells. Compound 7h showed inhibition of pChk1 at Ser 317 in HeLa cells at a concentration of 3.995 µM. Further analysis for Chk1 and pChk1 expression was carried out in Hela cells by treatment against all the three compounds at a range of concentrations of 2, 5 and 10 µM, wherein compound 7h showed Chk1 inhibition at 2 and 5 µM, while pChk1 expression was observed for compound 7l at a concentration of 5 µM. To support the results, the binding interactions of the compounds with the ATR kinase domain was studied through molecular docking, wherein compounds 2c, 7h and 7l showed binding interactions similar to those of Torin2, a known mTOR/ATR inhibitor. Further studies on this set of molecules is in progress for their specificity towards the ATR pathway.
Collapse
|
17
|
Binding Studies and Lead Generation of Pteridin-7(8H)-one Derivatives Targeting FLT3. Int J Mol Sci 2022; 23:ijms23147696. [PMID: 35887060 PMCID: PMC9319409 DOI: 10.3390/ijms23147696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Ligand modification by substituting chemical groups within the binding pocket is a popular strategy for kinase drug development. In this study, a series of pteridin-7(8H)-one derivatives targeting wild-type FMS-like tyrosine kinase-3 (FLT3) and its D835Y mutant (FL3D835Y) were studied using a combination of molecular modeling techniques, such as docking, molecular dynamics (MD), binding energy calculation, and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies. We determined the protein–ligand binding affinity by employing molecular mechanics Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA), fast pulling ligand (FPL) simulation, linear interaction energy (LIE), umbrella sampling (US), and free energy perturbation (FEP) scoring functions. The structure–activity relationship (SAR) study was conducted using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), and the results were emphasized as a SAR scheme. In both the CoMFA and CoMSIA models, satisfactory correlation statistics were obtained between the observed and predicted inhibitory activity. The MD and SAR models were co-utilized to design several new compounds, and their inhibitory activities were anticipated using the CoMSIA model. The designed compounds with higher predicted pIC50 values than the most active compound were carried out for binding free energy evaluation to wild-type and mutant receptors using MM-PB/GBSA, LIE, and FEP methods.
Collapse
|
18
|
Barreca M, Ingarra AM, Raimondi MV, Spanò V, De Franco M, Menilli L, Gandin V, Miolo G, Barraja P, Montalbano A. Insight on pyrimido[5,4-g]indolizine and pyrimido[4,5-c]pyrrolo[1,2-a]azepine systems as promising photosensitizers on malignant cells. Eur J Med Chem 2022; 237:114399. [DOI: 10.1016/j.ejmech.2022.114399] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
|
19
|
Discovery of GSK3β Inhibitors through In Silico Prediction-and-Experiment Cycling Strategy, and Biological Evaluation. Molecules 2022; 27:molecules27123825. [PMID: 35744952 PMCID: PMC9230645 DOI: 10.3390/molecules27123825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Direct inhibitors of glycogen synthase kinase 3β (GSK3β) have been investigated and reported for the past 20 years. In the search for novel scaffold inhibitors, 3000 compounds were selected through structure-based virtual screening (SBVS), and then high-throughput enzyme screening was performed. Among the active hit compounds, pyrazolo [1,5-a]pyrimidin-7-amine derivatives showed strong inhibitory potencies on the GSK3β enzyme and markedly activated Wnt signaling. The result of the molecular dynamics (MD) simulation, enhanced by the upper-wall restraint, was used as an advanced structural query for the SBVS. In this study, strong inhibitors designed to inhibit the GSK3β enzyme were discovered through SBVS. Our study provides structural insights into the binding mode of the inhibitors for further lead optimization.
Collapse
|
20
|
Wang Y, Ji B, Cheng Z, Zhang L, Cheng Y, Li Y, Ren J, Liu W, Ma Y. Synthesis and Biological Evaluation of Novel Synthetic Indolone Derivatives as Anti-Tumor Agents Targeting p53-MDM2 and p53-MDMX. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123721. [PMID: 35744849 PMCID: PMC9230548 DOI: 10.3390/molecules27123721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
A series of novel indolone derivatives were synthesized and evaluated for their binding affinities toward MDM2 and MDMX. Some compounds showed potent MDM2 and moderate MDMX activities. Among them, compound A13 exhibited the most potent affinity toward MDM2 and MDMX, with a Ki of 0.031 and 7.24 μM, respectively. A13 was also the most potent agent against HCT116, MCF7, and A549, with IC50 values of 6.17, 11.21, and 12.49 μM, respectively. Western blot analysis confirmed that A13 upregulated the expression of MDM2, MDMX, and p53 by Western blot analysis. These results indicate that A13 is a potent dual p53-MDM2 and p53-MDMX inhibitor and deserves further investigation.
Collapse
Affiliation(s)
- Yali Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
- Correspondence:
| | - Bo Ji
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Zhongshui Cheng
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Lianghui Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yingying Cheng
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yingying Li
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Jin Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yuanyuan Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
21
|
Lee Y, Hyun CG. Anti-Inflammatory Effects of Psoralen Derivatives on RAW264.7 Cells via Regulation of the NF-κB and MAPK Signaling Pathways. Int J Mol Sci 2022; 23:5813. [PMID: 35628627 PMCID: PMC9146895 DOI: 10.3390/ijms23105813] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/22/2022] Open
Abstract
Using repositioning to find new indications for existing functional substances has become a global target of research. The objective of this study is to investigate the anti-inflammatory potential of psoralen derivatives (5-hydroxypsoralen, 5-methoxypsoralen, 8-hydroxypsoralen, and 8-methoxypsoralen) in macrophages cells. The results indicated that most psoralen derivatives exhibited significantly inhibited prostaglandin E2 (PGE2) production, particularly for 8-hydroxypsoralen (xanthotoxol) in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. In addition, xanthotoxol treatment decreased the PGE2, IL-6, and IL-1β production caused by LPS stimulation in a concentration-dependent manner. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which activated with LPS treatment, were decreased by xanthotoxol treatment. Mechanistic studies revealed that xanthotoxol also suppressed LPS-stimulated phosphorylation of the inhibitor of κBα (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells. The Western blot assay results show that xanthotoxol suppresses LPS-induced p65 translocation from cytosol to the nucleus in RAW 264.7 cells. Moreover, we tested the potential application of xanthotoxol as a cosmetic material by performing human skin patch tests. In these tests, xanthotoxol did not induce any adverse reactions at a 100 μΜ concentration. These results demonstrate that xanthotoxol is a potential therapeutic agent for topical application that inhibits inflammation via the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| |
Collapse
|