1
|
Zhang X, Cai W, Wang C, Tian J. N-methyl-d-aspartate receptors (NMDARs): a glutamate-activated cation channel with biased signaling and therapeutic potential in brain disorders. Pharmacol Ther 2025:108888. [PMID: 40412765 DOI: 10.1016/j.pharmthera.2025.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/21/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are a type of calcium-permeable ion channel receptors that are extensively distributed throughout the body, composed of various subunits. The presence of diverse ligands and subcellular localizations of the receptors confer biased signaling and distinct functional roles. Activation of the NMDARs induces calcium influx, which plays a pivotal role in neurotransmitter release, synaptic plasticity, and intracellular signaling. Differential localization of NMDARs at synaptic and extrasynaptic sites results in divergent physiological effects; excessive or insufficient activation of NMDARs disrupts calcium homeostasis, leading to neuronal damage and subsequent neurological dysfunction as well as related diseases. Therefore, it is crucial to develop drugs targeting NMDAR with high efficacy with low toxicity for treating disorders associated with NMDARs abnormalities. In this review, we summarize both fundamental and clinical studies on NMDARs while discussing potential therapeutic targets aimed at modulating ion channel activity through regulating mechanisms, subunit rearrangement, membrane expression, and the specific targeting of synaptic versus extrasynaptic NMDARs. Our goal is to provide new insights for innovative drug development.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Wensheng Cai
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guang Dong, PR China
| | - Jing Tian
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China.
| |
Collapse
|
2
|
Cai Y, Li Y, Wang Y, Xu Y, Chen T, Xue R, Liu Y, Chen W, Yang X, Liu Z, Bao X, Huang Z. Triple-mode sensing platform for acetylcholinesterase activity monitoring and anti-Alzheimer's drug screening based on a highly stable Cu (I) compound. Biosens Bioelectron 2025; 271:117078. [PMID: 39708491 DOI: 10.1016/j.bios.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Acetylcholinesterase (AChE) and AChE inhibitors play critical roles in the early diagnosis and treatment of Alzheimer's disease (AD). Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform was constructed for both AChE activity monitoring and AChE inhibitor screening by exploring a Cu (I) compound, Cu3I (SR)2 (R = CH2CH2NH2), as a fluorescent probe. In comparison of most other fluorescent probes, Cu3I (SR)2 presented exceptional stability against pH, temperature, UV irradiation, redox agents, and metal ions, as well as good recyclability due to its unique chemical structure. We further found the fluorescence emission of Cu3I (SR)2 could be quenched by MnO2 nanosheet (NS) via inner filter effect, and restored by thiocholine (TCh) generated from the hydrolysis of acetylthiocholine iodide (ATCh) in the catalysis of AChE. On this basis, a fluorescence "turn-on" assay was developed for monitoring AChE activity with a detection limit of 0.03 U/L and a detection range of 0.25-50 U/L. This method demonstrates great potential for real-time detection of AChE activity in biological samples and screening of AChE inhibitors obtained from herbal extracts as anti-AD agents. Additionally, Cu3I (SR)2/MnO2 NS sensing system also exhibited a color change from brown to colorless as the increasing AChE activity, which allowed the colorimetric and smartphone detection of AChE activity.
Collapse
Affiliation(s)
- Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Yue Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Yuanyuan Wang
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yihan Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Ruisong Xue
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yanmei Liu
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Wei Chen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, 215400, Suzhou, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
3
|
Ogos M, Stary D, Bajda M. Recent Advances in the Search for Effective Anti-Alzheimer's Drugs. Int J Mol Sci 2024; 26:157. [PMID: 39796014 PMCID: PMC11720639 DOI: 10.3390/ijms26010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression. Moreover, these drugs typically target a single pathogenic mechanism, leaving other contributing factors unaddressed. Recent advancements in drug design have led to the development of multi-target-directed ligands (MTDLs), which have gained popularity for their ability to simultaneously target multiple pathogenic mechanisms. This paper focuses on analyzing the activity, mechanism of action, and binding properties of the anti-Alzheimer's MTDLs developed between 2020 and 2024.
Collapse
Affiliation(s)
| | | | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (M.O.); (D.S.)
| |
Collapse
|
4
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Recent Advances in Therapeutics for the Treatment of Alzheimer's Disease. Molecules 2024; 29:5131. [PMID: 39519769 PMCID: PMC11547905 DOI: 10.3390/molecules29215131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The most prevalent chronic neurodegenerative illness in the world is Alzheimer's disease (AD). It results in mental symptoms including behavioral abnormalities and cognitive impairment, which have a substantial financial and psychological impact on the relatives of the patients. The review discusses various pathophysiological mechanisms contributing to AD, including amyloid beta, tau protein, inflammation, and other factors, while emphasizing the need for effective disease-modifying therapeutics that alter disease progression rather than merely alleviating symptoms. This review mainly covers medications that are now being studied in clinical trials or recently approved by the FDA that fall under the disease-modifying treatment (DMT) category, which alters the progression of the disease by targeting underlying biological mechanisms rather than merely alleviating symptoms. DMTs focus on improving patient outcomes by slowing cognitive decline, enhancing neuroprotection, and supporting neurogenesis. Additionally, the review covers amyloid-targeting therapies, tau-targeting therapies, neuroprotective therapies, and others. This evaluation specifically looked at studies on FDA-approved novel DMTs in Phase II or III development that were carried out between 2021 and 2024. A thorough review of the US government database identified clinical trials of biologics and small molecule drugs for 14 agents in Phase I, 34 in Phase II, and 11 in Phase III that might be completed by 2028.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Ladagu A, Olopade F, Chazot P, Elufioye T, Luong T, Fuller M, Halprin E, Mckay J, Ates-Alagoz Z, Gilbert T, Adejare A, Olopade J. ZA-II-05, a novel NMDA-receptor antagonist reverses vanadium-induced neurotoxicity in Caenorhabditis elegans (C. elegans). BMC Neurosci 2024; 25:56. [PMID: 39468459 PMCID: PMC11520585 DOI: 10.1186/s12868-024-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Vanadium is a widely used transition metal in industrial applications, but it also poses significant neurotoxic and environmental risks. Previous studies have shown that exposure to vanadium may lead to neurodegenerative diseases and neuropathic pain, raising concerns about its impact on human health and the ecosystem. To address vanadium neurotoxicity, through targeting NMDA glutamate and dopamine signaling, both involved in neurodegenerative disorders, shows promise. Using Caenorhabditis elegans as a model, we evaluated a novel compound with a mixed NMDA glutamate receptor-dopamine transporter pharmacology, ZA-II-05 and found it effectively ameliorated vanadium-induced neurotoxicity, suggesting a potential neuroprotective role. METHODS Synchronized young adult worms were assigned to four different experimental groups; Controls; 100 mM of Vanadium; Vanadium and 1 mg/ml ZA-II-05; and ZA-II-05 alone. These were examined with different markers, including DAPI, MitoTracker Green and MitoSox stains for assessment of nuclei and mitochondrial density and oxidative stress, respectively. RESULTS Exposure to vanadium in C. elegans resulted in decreased nuclear presence and reduction in mitochondrial content were also analyzed based on fluorescence in the pharyngeal region, signifying an increase in the production of reactive oxygen species, while vanadium co-treatment with ZA-II-05 caused a significant increase in nuclear presence and mitochondrial content. DISCUSSION Treatment with ZA-II-05 significantly preserved cellular integrity, exhibiting a reversal of the detrimental effects induced by vanadium by modulating and preserving the normal function of chemosensory neurons and downstream signaling pathways. This study provides valuable insights into the mechanisms of vanadium-induced neurotoxicity and offers perspectives for developing therapeutic interventions for neurodegenerative diseases related to environmental toxins.
Collapse
Affiliation(s)
- Amany Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul Chazot
- Department of Biosciences, Durham University, County Durham, DH1 3LE, UK
| | - Taiwo Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Ethan Halprin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jessica Mckay
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Taidinda Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA.
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Nuha D, Evren AE, Özkan BNS, Gundogdu-Karaburun N, Karaburun AÇ. Design, synthesis, biological evaluation, and molecular modeling simulations of new phthalazine-1,4-dione derivatives as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2024; 357:e2400067. [PMID: 38967191 DOI: 10.1002/ardp.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
The development of targeted phthalazine-1,4-dione acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease involved the synthesis of 32 compounds via a multistage process. Various analytical techniques confirmed the compounds' identities. Thirteen compounds were found to inhibit AChE by more than 50% without affecting butyrylcholinesterase (BChE). Among these, three compounds, 8m, 8n, and 8p, exhibited extraordinary activity similar to donepezil, a reference AChE inhibitor. During enzyme kinetic studies, compound 8n, displaying the highest AChE inhibitory activity, underwent evaluation at three concentrations (2 × IC50, IC50, and IC50/2). Lineweaver-Burk plots indicated mixed inhibition activity for compound 8n against AChE, suggesting a combination of competitive and noncompetitive characteristics. Additionally, effective derivatives 8m, 8n, and 8p exhibited high blood-brain barrier (BBB) permeability in in vitro parallel artificial membrane permeability assay tests. Molecular docking studies revealed that these compounds bind to the enzyme's active site residues in a position similar to donepezil. Molecular dynamic simulations confirmed the stability of the protein-ligand system, and the chemical reactivity characteristics of the compounds were investigated using density functional theory. The compounds' wide energy gaps suggest stability and therapeutic potential. This research represents a significant step toward finding a potential cure for Alzheimer's disease. However, further research and testing are required to determine the compounds' safety and efficacy. The unique structure of phthalazine derivatives makes them suitable for various biological activities, and these compounds show promise for developing effective drugs for treating Alzheimer's disease. Overall, the development of these targeted compounds is a crucial advancement in the search for an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ahmet Çagri Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Yang Y, Wei S, Tian H, Cheng J, Zhong Y, Zhong X, Huang D, Jiang C, Ke X. Adverse event profile of memantine and donepezil combination therapy: a real-world pharmacovigilance analysis based on FDA adverse event reporting system (FAERS) data from 2004 to 2023. Front Pharmacol 2024; 15:1439115. [PMID: 39101151 PMCID: PMC11294921 DOI: 10.3389/fphar.2024.1439115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Background Donepezil in combination with memantine is a widely used clinical therapy for moderate to severe dementia. However, real-world population data on the long-term safety of donepezil in combination with memantine are incomplete and variable. Therefore, the aim of this study was to analyze the adverse events (AEs) of donepezil in combination with memantine according to US Food and Drug Administration Adverse Event Reporting System (FAERS) data to provide evidence for the safety monitoring of this therapy. Methods We retrospectively analyzed reports of AEs associated with the combination of donepezil and memantine from 2004 to 2023 extracted from the FAERS database. Whether there was a significant association between donepezil and memantine combination therapy and AEs was assessed using four disproportionality analysis methods, namely, the reporting odds ratio, proportional reporting ratio, Bayesian confidence propagation neural network, and multi-item gamma Poisson shrinker methods. To further investigate potential safety issues, we also analyzed differences and similarities in the time of onset and incidence of AEs stratified by sex and differences and similarities in the incidence of AEs stratified by age. Results Of the 2,400 adverse drug reaction (ADR) reports in which the combination of donepezil and memantine was the primary suspected drug, most of the affected patients were female (54.96%) and older than 65 years of age (79.08%). We identified 22 different system organ classes covering 100 AEs, including some common AEs such as dizziness and electrocardiogram PR prolongation; fall, pleurothotonus and myoclonus were AEs that were not listed on the drug label. Moreover, we obtained 88 reports of AEs in men and 100 reports of AEs in women; somnolence was a common AE in both men and women and was more common in women, whereas pleurothotonus was a more common AE in men. In addition, we analyzed 12 AEs in patients younger than 18 years, 16 in patients between 18 and 65 years, and 113 in patients older than 65 years. The three age groups had distinctive AEs, but lethargy was the common AE among all age groups. Finally, the median time to AE onset was 19 days in all cases. In both men and women, most AEs occurred within a month of starting donepezil plus memantine, but some continued after a year of treatment. Conclusion Our study identified potential and new AEs of donepezil in combination with memantine; some of these AEs were the same as in the specification, and some of the AE signals were not shown in the specification. In addition, there were sex and age differences in some of the AEs. Therefore, our findings may provide valuable insights for further studies on the safety of donepezil and memantine combination therapy, which are expected to contribute to the safe use of this therapy in clinical practice.
Collapse
Affiliation(s)
- Yihan Yang
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sheng Wei
- Department of General Practice, The Second Affiliated Hospital of Wannan Medical College, Anhui, China
| | - Huan Tian
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Cheng
- The First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoling Zhong
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cai Jiang
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Sharma M, Pal P, Gupta SK. Advances in Alzheimer's disease: A multifaceted review of potential therapies and diagnostic techniques for early detection. Neurochem Int 2024; 177:105761. [PMID: 38723902 DOI: 10.1016/j.neuint.2024.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most formidable neurological disorders, affecting millions globally. This review provides a holistic overview of the therapeutic strategies, both conventional and novel, aimed at mitigating the impact of AD. Initially, we delve into the conventional approach, emphasizing the role of Acetylcholinesterase (AChE) inhibition, which has been a cornerstone in AD management. As our understanding of AD evolves, several novel potential approaches emerge. We discuss the promising roles of Butyrylcholinesterase (BChE) inhibition, Tau Protein inhibitors, COX-2 inhibition, PPAR-γ agonism, and FAHH inhibition, among others. The potential of the endocannabinoids (eCB) system, cholesterol-lowering drugs, metal chelators, and MMPs inhibitors are also explored, culminating in the exploration of the pivotal role of microRNA in AD progression. Parallel to these therapeutic insights, we shed light on the novel tools and methodologies revolutionizing AD research. From the quantitative analysis of gene expression by qRTPCR to the evaluation of mitochondrial function using induced pluripotent stem cells (iPSCs), the advances in diagnostic and research tools offer renewed hope. Moreover, we explore the current landscape of clinical trials, highlighting the leading drug interventions and their respective stages of development. This comprehensive review concludes with a look into the future perspectives, capturing the potential breakthroughs and innovations on the horizon. Through a synthesis of current knowledge and emerging research, this article aims to provide a consolidated resource for clinicians, researchers, and academicians in the realm of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
9
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
10
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Di Martino RMC, Maxwell BD, Pirali T. Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov 2023; 22:562-584. [PMID: 37277503 PMCID: PMC10241557 DOI: 10.1038/s41573-023-00703-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/07/2023]
Abstract
Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.
Collapse
Affiliation(s)
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
12
|
Shinozaki Y, Tega Y, Akanuma SI, Hosoya KI. The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier. Pharmaceuticals (Basel) 2023; 16:ph16030435. [PMID: 36986534 PMCID: PMC10053584 DOI: 10.3390/ph16030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases. The objective of this study was to characterize the structural features of compounds for the amantadine-sensitive transport system. Inhibition analysis conducted on a rat inner BRB model cell line indicated that the transport system strongly interacts with lipophilic amines, especially primary amines. In addition, lipophilic primary amines that have polar groups, such as hydroxy and carboxy groups, did not inhibit the amantadine transport system. Furthermore, certain types of primary amines with an adamantane skeleton or linear alkyl chain exhibited a competitive inhibition of amantadine uptake, suggesting that these compounds are potential substrates for the amantadine-sensitive drug transport system at the inner BRB. These results are helpful for producing the appropriate drug design to improve the blood-to-retina delivery of neuroprotective drugs.
Collapse
|
13
|
Uytun AN, Osmaniye D, Sağlık BN, Levent S, Ozkay Y, Kaplancıklı ZA. Synthesis of novel thiosemicarbazone derivatives and investigation of their dual AChE and MAO-B inhibitor effects. J Mol Recognit 2022; 35:e2990. [PMID: 36056718 DOI: 10.1002/jmr.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
In this study, 15 thiosemicarbazone derivatives were synthesized. Analysis of the obtained compounds was performed by means of 1 H-NMR, 13 C-NMR and high resolution mass spectroscopy (HRMS) spectroscopic methods. The inhibition effect of the obtained compounds on cholinesterase and monoaminoxidase (MAO) enzymes were investigated with in vitro methods. None of the compounds showed significant activity on the butyrylcholinesterase enzyme. On the other hand, compounds 3b, 3c, 3e, 3k, 3l, 3m, 3n and 3o displayed significant activity on acetylcholinesterase (AChE) while compounds 3f, 3i, 3k, 3l, 3m, 3n, 3o also showed remarkable effects on monoamine oxidase-B (MAO-B) enzymes. For the selected compounds, docking studies were performed and the enzyme active site and binding modes were determined. It was revealed that the strongest interaction with AChE and MAO-B enzyme active sites was observed with the compound 3k. Another important factor in the treatment of diseases affecting the central nervous system such as Alzheimer's is the ability of the compounds to cross the blood-brain barrier (BBB). Additionally, the agents planned for the treatment of these diseases must also pass the blood-brain barrier. Therefore, in silico BBB penetration properties of active compounds were investigated.
Collapse
Affiliation(s)
- Ayşe Nur Uytun
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey.,Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Begüm Nurpelin Sağlık
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey.,Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey.,Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yusuf Ozkay
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey.,Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
14
|
Companys-Alemany J, Turcu AL, Vázquez S, Pallàs M, Griñán-Ferré C. Glial cell reactivity and oxidative stress prevention in Alzheimer's disease mice model by an optimized NMDA receptor antagonist. Sci Rep 2022; 12:17908. [PMID: 36284170 PMCID: PMC9596444 DOI: 10.1038/s41598-022-22963-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/21/2022] [Indexed: 01/20/2023] Open
Abstract
In Alzheimer's disease pathology, several neuronal processes are dysregulated by excitotoxicity including neuroinflammation and oxidative stress (OS). New therapeutic agents capable of modulating such processes are needed to foster neuroprotection. Here, the effect of an optimised NMDA receptor antagonist, UB-ALT-EV and memantine, as a gold standard, have been evaluated in 5XFAD mice. Following treatment with UB-ALT-EV, nor memantine, changes in the calcineurin (CaN)/NFAT pathway were detected. UB-ALT-EV increased neurotropic factors (Bdnf, Vgf and Ngf) gene expression. Treatments reduced astrocytic and microglial reactivity as revealed by glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1) quantification. Interestingly, only UB-ALT-EV was able to reduce gene expression of Trem2, a marker of microglial activation and NF-κB. Pro-inflammatory cytokines Il-1β, Ifn-γ, Ccl2 and Ccl3 were down-regulated in UB-ALT-EV-treated mice but not in memantine-treated mice. Interestingly, the anti-inflammatory markers of the M2-migroglial phenotype, chitinase-like 3 (Ym1) and Arginase-1 (Arg1), were up-regulated after treatment with UB-ALT-EV. Since iNOS gene expression decreased after UB-ALT-EV treatment, a qPCR array containing 84 OS-related genes was performed. We found changes in Il-19, Il-22, Gpx6, Ncf1, Aox1 and Vim gene expression after UB-ALT-EV. Hence, our results reveal a robust effect on neuroinflammation and OS processes after UB-ALT-EV treatment, surpassing the memantine effect in 5XFAD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Optimized N-methyl-D-aspartate receptor antagonist exhibits hippocampal proneurogenic effects in aged senescence-accelerated mouse prone 8 mice. Neuroreport 2022; 33:623-628. [DOI: 10.1097/wnr.0000000000001825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Chayrov R, Volkova T, Perlovich G, Zeng L, Li Z, Štícha M, Liu R, Stankova I. Synthesis, Neuroprotective Effect and Physicochemical Studies of Novel Peptide and Nootropic Analogues of Alzheimer Disease Drug. Pharmaceuticals (Basel) 2022; 15:ph15091108. [PMID: 36145329 PMCID: PMC9500833 DOI: 10.3390/ph15091108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Glutamate is an excitatory neurotransmitter in the nervous system. Excessive glutamate transmission can lead to increased calcium ion expression, related to increased neurotoxicity. Memantine is used for treating patients with Alzheimer’s disease (AD) due to its protective action on the neurons against toxicity caused by over activation of N-methyl-D-aspartate receptors. Nootropics, also called “smart drugs”, are used for the treatment of cognitive deficits. In this work, we evaluate the neuroprotective action of four memantine analogues of glycine derivatives, including glycyl-glycine, glycyl-glycyl-glycine, sarcosine, dimethylglycine and three conjugates with nootropics, modafinil, piracetam and picamilon. The new structural memantine derivatives improved cell viability against copper-induced neurotoxicity in APPswe cells and glutamate-induced neurotoxicity in SH-SY5Y cells. Among these novel compounds, modafinil-memantine, piracetam-memantine, sarcosine-memantine, dimethylglycine-memantine, and glycyl-glycine-memantine were demonstrated with good EC50 values of the protective effects on APPswe cells, accompanied with moderate amelioration from glutamate-induced neurotoxicity. In conclusion, our study demonstrated that novel structural derivatives of memantine might have the potential to develop promising lead compounds for the treatment of AD. The solubility of memantine analogues with nootropics and memantine analogues with glycine derivatives in buffer solutions at pH 2.0 and pH 7.4 simulating the biological media at 298.15 K was determined and the mutual influence of the structural fragments in the molecules on the solubility behavior was analyzed. The significative correlation equations relating the solubility and biological properties with the structural HYBOT (Hydrogen Bond Thermodynamics) descriptors were derived. These equations would greatly simplify the task of the directed design of the memantine analogues with improved solubility and enhanced bioavailability.
Collapse
Affiliation(s)
- Radoslav Chayrov
- Department of Chemistry, Faculty of Mathematics & Natural Sciences, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria
| | - Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - German Perlovich
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Martin Štícha
- Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (R.L.); (I.S.); Tel.: +86-10-67087731 (R.L.); +359-897-295919 (I.S.)
| | - Ivanka Stankova
- Department of Chemistry, Faculty of Mathematics & Natural Sciences, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria
- Correspondence: (R.L.); (I.S.); Tel.: +86-10-67087731 (R.L.); +359-897-295919 (I.S.)
| |
Collapse
|
17
|
Companys-Alemany J, Turcu AL, Schneider M, Müller CE, Vázquez S, Griñán-Ferré C, Pallàs M. NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cell Mol Life Sci 2022; 79:408. [PMID: 35810220 PMCID: PMC9271115 DOI: 10.1007/s00018-022-04438-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022]
Abstract
Overstimulation of N-methyl-d-aspartate receptors (NMDARs) is the leading cause of brain excitotoxicity and often contributes to neurodegenerative diseases such as Alzheimer’s Disease (AD), the most common form of dementia. This study aimed to evaluate a new NMDA receptor antagonist (UB-ALT-EV) and memantine in 6-month-old female 5XFAD mice that were exposed orally to a chronic low-dose treatment. Behavioral and cognitive tests confirmed better cognitive performance in both treated groups. Calcium-dependent protein calpain-1 reduction was found after UB-ALT-EV treatment but not after memantine. Changes in spectrin breakdown products (SBDP) and the p25/p35 ratio confirmed diminished calpain-1 activity. Amyloid β (Aβ) production and deposition was evaluated in 5XFAD mice and demonstrated a robust effect of NMDAR antagonists on reducing Aβ deposition and the number and size of Thioflavin-S positive plaques. Furthermore, glycogen synthase kinase 3β (GSK3β) active form and phosphorylated tau (AT8) levels were diminished after UB-ALT-EV treatment, revealing tau pathology improvement. Because calpain-1 is involved in autophagy activation, autophagic proteins were studied. Strikingly, results showed changes in the protein levels of unc-51-like kinase (ULK-1), beclin-1, microtubule-associated protein 1A/1B-light chain 3(LC3B-II)/LC3B-I ratio, and lysosomal-associated membrane protein 1 (LAMP-1) after NMDAR antagonist treatments, suggesting an accumulation of autophagolysosomes in 5XFAD mice, reversed by UB-ALT-EV. Likewise, treatment with UB-ALT-EV recovered a WT mice profile in apoptosis markers Bcl-2, Bax, and caspase-3. In conclusion, our results revealed the potential neuroprotective effect of UB-ALT-EV by attenuating NMDA-mediated apoptosis and reducing Aβ deposition and deposition jointly with the autophagy rescue to finally reduce cognitive alterations in a mice model of familial AD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|