1
|
Fadaly WAA, Nemr MTM, Abd El-Hameed AM, Mohamed FEA, Zidan TH. Design and Synthesis of New pyrazole Hybrids Linked to Oxime and Nitrate Moieties as COX-2, EGFR L858R/T790M Inhibitors and Nitric Oxide Donors with dual Anti-inflammatory/Anti-proliferative Activities. Bioorg Chem 2025; 161:108563. [PMID: 40349531 DOI: 10.1016/j.bioorg.2025.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Two new series of pyrazole derivatives 14a-l and 17a-c with oxime/nitrate moieties as EGFRWT, mutant (EGFRL858R/T790M) and COX-2 inhibitors were synthesized and evaluated for anti-proliferative and anti-inflammatory activities. Compounds 14c, 14e, 14 g, 14i-l, 17b and 17c exhibited COX-2 selectivity in the range of (S.I. = 17-42) when compared to celecoxib (S.I. = 20.43). Concerning anti-neoplastic activity, screening was carried out against 60 human cancer cell lines by (NCI); Nine compounds (14c, 14e, 14 g, 14i-l, 17b and 17c) showed excellent inhibitory activity against all cancer cell lines especially non-small cell lung cancer (NSCLC). Further cytotoxicity testing of compounds 14c, 14e, 14 g, 14i-l, 17b and 17c was conducted on established EGFRT790M/L858R-resistant NSCLC (H1975), all tested compounds except 14 l exhibited potent activity (IC50 = 3.02-27.32 μM) which is higher than that of osimertinib (IC50 = 37.29 μM). It was noted that compound 17c, showed cell cycle arrest at G0/G1 phase of NSCLC (H1975) cells. In addition, compounds 14c, 14e, 14 g, 14i-l, 17b and 17c induced improved selective inhibitory activity against double mutant EGFRL858R/T790M tyrosine kinases with IC50 in the range of (0.031-0.076 μM, with selectivity index range S.I. of 2.5-14.58) which was comparable to that of osimertinib (IC50 = 0.037 μM, with S.I. of 1.89). The most potent anti-cancer compounds 14c, 14e, 14 g, 14i-l, 17b and 17c released NO in a slow rate of (1.45-3.37 %). Finally, applying covalent docking, we identified the covalent binding of 14 g, 14 k, and 17c with Cys797, providing insights into their potential as irreversible inhibitors targeting EGFRL858R/T790M protein.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt.
| | - Abeer M Abd El-Hameed
- Chemistry Department, Faculty of Science, Taibah University, P.O. BOX 30002, Al-Madinah, Al-Munawarah 14177, Saudi Arabia
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Tariq A, Shoaib M, Qu L, Shoukat S, Nan X, Song J. Exploring 4 th generation EGFR inhibitors: A review of clinical outcomes and structural binding insights. Eur J Pharmacol 2025; 997:177608. [PMID: 40216184 DOI: 10.1016/j.ejphar.2025.177608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Epidermal growth factor receptor (EGFR) is a potential target for anticancer therapies and plays a crucial role in cell growth, survival, and metastasis. EGFR gene mutations trigger aberrant signaling, leading to non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) effectively target these mutations to treat NSCLC. While the first three generations of EGFR TKIs have been proven effective, the emergence of the EGFR-C797S resistance mutation poses a new challenge. To address this, various synthetic EGFR TKIs have been developed. In this review, we have summarized the EGFR TKIs reported in the past five years, focusing on their clinical outcomes and structure-activity relationship analysis. We have also explored binding modes and interactions between the binding pocket and ligands to provide insights into the mechanisms of these inhibitors, which contribute to advancements in targeted cancer therapy. Additionally, artificial Intelligence-driven methods, including recursive neural networks and reinforcement learning, have revolutionized EGFR inhibitor design by facilitating rapid screening, predicting EGFR mutations, and novel compound generation.
Collapse
Affiliation(s)
- Amina Tariq
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Muhammad Shoaib
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lingbo Qu
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China; Institute of Chemistry, Henan Academy of Science, Zhengzhou, Henan, 450046, China
| | - Sana Shoukat
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xiaofei Nan
- School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jinshuai Song
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
Ahmad I, Patel HM. From challenges to solutions: A review of fourth-generation EGFR tyrosine kinase inhibitors to overcome the C797S triple mutation in non-small cell lung cancer. Eur J Med Chem 2025; 284:117178. [PMID: 39724727 DOI: 10.1016/j.ejmech.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
This Review discusses recent advancements in the development of fourth-generation "Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs)" targeting resistance mutations, with an emphasis on the C797S mutation in "Non-small Cell Lung Cancer (NSCLC)". While first, second, and third-generation EGFR-TKIs have made significant progress in overcoming EGFR kinase resistance, the emergence of the EGFR-C797S mutation poses a substantial challenge, particularly in the context of resistance to Osimertinib. Fourth-generation TKIs are classified into ATP-competitive, allosteric, and ortho-allosteric inhibitors, with the goal of enhancing specificity for mutant EGFR while minimizing off-target effects on wild-type EGFR to reduce toxicity. This Review provides a detailed analysis of structural modifications and their impact on drug potency and selectivity, with the aim of improving efficacy against resistant NSCLC. Preclinical and early-phase clinical trials of these inhibitors are promising, though further optimization of pharmacokinetic and safety profiles is crucial for future clinical success. This work offers key insights for medicinal chemists in the design and development of fourth-generation EGFR inhibitors to address drug-resistant mutations in NSCLC.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
4
|
Wang X, Qin Z, Qiu W, Xu K, Bai Y, Zeng B, Ma Y, Yang S, Shi Y, Fan Y. Novel EGFR inhibitors against resistant L858R/T790M/C797S mutant for intervention of non-small cell lung cancer. Eur J Med Chem 2024; 277:116711. [PMID: 39094277 DOI: 10.1016/j.ejmech.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
To overcome C797S mutation, the latest and most common resistance mechanism in the clinical treatment of third-generation EGFR inhibitor, a novel series of substituted 6-(2-aminopyrimidine)-indole derivatives were designed and synthesized. Through the structure-activity relationship (SAR) study, compound 11eg was identified as a novel and potent EGFR L858R/T790M/C797S inhibitor (IC50 = 0.053 μM) but had a weak effect on EGFRWT (IC50 = 1.05 μM). 11eg significantly inhibited the proliferation of the non-small cell lung cancer (NSCLC) cells harboring EGFRL858R/T790M/C797S with an IC50 of 0.052 μM. 11eg also showed potent inhibitory activity against other NSCLC cell lines harboring main EGFR mutants. Furthermore, 11eg exhibited much superior activity in arresting cell cycle and inducing apoptosis of NSCLC cells with mutant EGFRC797S. It blocked cellular EGFR signaling. Importantly, 11eg markedly suppressed the tumor growth in in vivo xenograft mouse model with good safety. Additionally, 11eg displayed good microsomal stability. These results demonstrated the potential of 11eg with novel scaffold as a promising lead compound targeting EGFRC797S to guide in-depth structural optimization.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin, 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongxiang Qin
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenrui Qiu
- Tianjin Normal University, No.393, Extension of Bin Shui West Road, Xi Qing District, Tianjin, 300387, China
| | - Kejia Xu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yuting Bai
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Yakun Ma
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuang Yang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Yi Shi
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Yan Fan
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin, 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
5
|
Das D, Xie L, Hong J. Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019-2024). RSC Med Chem 2024:d4md00384e. [PMID: 39246743 PMCID: PMC11376191 DOI: 10.1039/d4md00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for the major portion (80-85%) of all lung cancer cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are commonly used as the targeted therapy for EGFR-mutated NSCLC. The FDA has approved first-, second- and third-generation EGFR-TKIs as therapeutics options. Osimertinib, the third-generation irreversible EGFR-TKI, has been approved for the treatment of NSCLC patients with the EGFRT790M mutation. However, due to the EGFRC797S mutation in the kinase domain of EGFR, resistance to osimertinib is observed and that limits the long-term effectiveness of the drug. The C797S mutation is one of the major causes of drug resistance against the third-generation EGFR TKIs. The C797S mutations including EGFR double mutations (19Del/C797S or L858R/C797S) and or EGFR triple mutations (19Del/T790M/C797S or L858R/T790M/C797S) cause major resistance to the third-generation EGFR-TKIs. Therefore, the discovery and development of fourth-generation EGFR-TKIs to target triple mutant EGFR with C797S mutation is a challenging topic in medicinal chemistry research. In this review, we discuss the discovery of novel fourth-generation EGFR TKIs, medicinal chemistry approaches and the strategies to overcome the C797S mutations. In vitro activities of EGFR-TKIs (2019-2024) against mutant EGFR TK, anti-proliferative activities, structural modifications, binding modes of the inhibitors and in vivo efficacies in animal models are discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Lingzhi Xie
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| |
Collapse
|
6
|
Xu Z, Wang L, Hu H. Current scenario of fused pyrimidines with in vivo anticancer therapeutic potential. Arch Pharm (Weinheim) 2024; 357:e2400202. [PMID: 38752780 DOI: 10.1002/ardp.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Li Wang
- Zhumadian Agriculture International Cooperation and Exchange Center, Zhumadian, Henan, People's Republic of China
| | - Hongyan Hu
- Zhumadian Aquatic Technology Promotion Station, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
7
|
Wang C, Wang X, Wang X, Tian B, Zhang S, Wang T, Ma Y, Fan Y. Design, synthesis and biological evaluation of potent epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors against resistance mutation for lung cancer treatment. Bioorg Chem 2024; 143:107004. [PMID: 38086238 DOI: 10.1016/j.bioorg.2023.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
In this study, we identified a newly synthesized compound 7o with potent inhibition on EGFR primary mutants (L858R, Del19) and drug-resistant mutant T790M with nanomolar IC50 values. 7o showed strong antiproliferative effects against EGFR mutant-driven non-small cell lung cancer (NSCLC) cells such as H1975, PC-9 and HCC827, over cells expressing EGFRWT. Molecular docking was performed to investigate the possible binding modes of 7o inside the binding site of EGFRL858R/T790M and EGFRWT. Analysis of cell cycle evidenced that 7o induced cell cycle arrest in G1 phases in the EGFR mutant cells, H1975 and PC-9, which resulted in decreased S-phase populations. Moreover, compound 7o induced cancer cell apoptosis in in vitro assays. In addition, 7o inhibited cellular phosphorylation of EGFR. In vivo, oral administration of 7o caused rapid tumor regression in H1975 xenograft model. Therefore, 7o might deserve further optimization as cancer treatment agent for EGFR mutant-driven NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoxue Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Baorui Tian
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Sihe Zhang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianqi Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yakun Ma
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yan Fan
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
8
|
Chang H, Zhang Z, Tian J, Bai T, Xiao Z, Wang D, Qiao R, Li C. Machine Learning-Based Virtual Screening and Identification of the Fourth-Generation EGFR Inhibitors. ACS OMEGA 2024; 9:2314-2324. [PMID: 38250375 PMCID: PMC10795152 DOI: 10.1021/acsomega.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal regulatory role in treating patients with advanced nonsmall cell lung cancer (NSCLC). Following the emergence of the EGFR tertiary CIS C797S mutation, all types of inhibitors lose their inhibitory activity, necessitating the urgent development of new inhibitors. Computer systems employ machine learning methods to process substantial volumes of data and construct models that enable more accurate predictions of the outcomes of new inputs. The purpose of this article is to uncover innovative fourth-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with the aid of machine learning techniques. The paper's data set was high-dimensional and sparse, encompassing both structured and unstructured descriptors. To address this considerable challenge, we introduced a fusion framework to select critical molecule descriptors by integrating the full quadratic effect model and the Lasso model. Based on structural descriptors obtained from the full quadratic effect model, we conceived and synthesized a variety of small-molecule inhibitors. These inhibitors demonstrated potent inhibitory effects on the two mutated kinases L858R/T790M/C797S and Del19/T790M/C797S. Moreover, we applied our model to virtual screening, successfully identifying four hit compounds. We have evaluated these hit ADME characteristics and look forward to conducting activity evaluations on them in the future to discover a new generation of EGFR-TKI.
Collapse
Affiliation(s)
- Hao Chang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyu Zhang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Jiaxin Tian
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tian Bai
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Zijie Xiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dianpeng Wang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Renzhong Qiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
9
|
Tang G, Wang W, Wang X, Ding K, Ngan SC, Chen JY, Sze SK, Gao L, Yuan P, Lu X, Yao SQ. Cell-active, irreversible covalent inhibitors that selectively target the catalytic lysine of EGFR by using fluorosulfate-based SuFEx chemistry. Eur J Med Chem 2023; 259:115671. [PMID: 37499291 DOI: 10.1016/j.ejmech.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR. The optimized compound 26 (as well as its close analog 30), possessing a novel arylfluorosulfate group (ArOSO2F), showed excellent in vitro potency (as low as 0.19 nM in independent IC50 determination) and selectivity against EGFR and many of its drug-resistant mutants. Both intact protein mass spectrometry (MS) and site-mapping analysis revealed that compound 26 covalently bound to EGFR at K745 through the formation of a sulfamate. In addition, compound 26 displayed good anti-proliferative potency against EGFR-overexpressing HCC827 cells by inhibiting endogenous EGFR autophosphorylation. The pharmacokinetic studies of compound 26 demonstrated the druggable potential of other ArOSO2F-containing compounds. Finally, competitive activity-based protein profiling (ABPP), cellular thermal shift assay (CETSA), as well as cellular wash-out experiments, all showed compound 26 to be the first cell-active, fluorosulfate-based targeted covalent inhibitor (TCI) of protein kinases capable of covalently engaging the catalytically conserved lysine of its target in live mammalian cells.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jiao-Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China.
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy. Eur J Med Chem 2022; 245:114900. [DOI: 10.1016/j.ejmech.2022.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|