1
|
Xia M, Li Z, Jiang H, Li Y, Hu L, He Y, Huang S, Tang L, Luo C, Gu S, Ding H, Wang M. Discovery of novel imidazo[1,2-b]pyridazine derivatives as potent covalent inhibitors of CDK12/13. Eur J Med Chem 2025; 288:117378. [PMID: 39955845 DOI: 10.1016/j.ejmech.2025.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive subtype of breast cancer, and treatment options for patients with TNBC remain highly limited. Recently, cyclin-dependent kinases 12/13 (CDK12/13) have been identified as promising therapeutic targets for TNBC. In our study, we report the design and synthesis of novel imidazo[1,2-b]pyrazine-based covalent inhibitors of CDK12/13, which exhibit potent inhibitory activity against TNBC cells. Among these compounds, compound 24 emerged as the most potent inhibitor, with CDK12 IC50 of 15.5 nM and CDK13 IC50 of 12.2 nM. Compound 24 forms a covalent bond with Cys1039 of CDK12 and effectively suppresses the proliferation of TNBC cell lines MDA-MB-231 and MDA-MB-468, with EC50 values of 5.0 nM and 6.0 nM, respectively. Compound 24 demonstrated superior efficacy to the currently known CDK12/13 covalent inhibitor, THZ531. These findings suggest compound 24 may be a promising lead for developing CDK12/13-targeted therapies for treating TNBC.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ziteng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hanrui Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yongchang He
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Siqi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shuangxi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Mingliang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Windon A, Al Assaad M, Hadi K, Mendelson N, Hissong E, Deshpande A, Tranquille M, Mclee J, Levine MF, Patel M, Medina-Martínez JS, Chiu K, Manohar J, Sigouros M, Ocean AJ, Sboner A, Jessurun J, Elemento O, Shah M, Mosquera JM. Emerging molecular phenotypes and potential therapeutic targets in esophageal and gastric adenocarcinoma unearthed by whole genome and transcriptome analyses. Pathol Res Pract 2025; 266:155788. [PMID: 39708521 DOI: 10.1016/j.prp.2024.155788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Adenocarcinoma of the esophagus and stomach demands a deeper molecular understanding to advance treatment strategies and improve patient outcomes. Here, we profiled the genome and transcriptome landscape of these cancers, explored molecular characteristics that are undetectable by other sequencing platforms, and analyzed their potential clinical ramifications. METHODS Our study employed state-of-the-art integrative analyses of whole genome and transcriptome sequencing on 51 matched tumor and germline samples from 46 patients. Mutations and rearrangements in clinically relevant cancer genes were investigated and correlated with OncoKB, a knowledge-based precision oncology database, to identify treatment implications. Genome-wide signatures and manually curated molecular profiles were also determined. RESULTS The analyses revealed 90 targetable oncogenic mutations and fusions in 63 % of the patients, including novel NTRK, NRG1, ALK, and MET fusions, and structural variants in cancer genes like RAD51B. Also, molecular signatures associated with mismatch repair and homologous recombination deficiency were elucidated. Notably, we identified CDK12-type genomic instability associated with CDK12 fusions. CONCLUSIONS Our findings support the potential of whole genome and transcriptome sequencing analyses as a comprehensive approach to identify treatment targets in adenocarcinoma of the stomach and the esophagus, and their application in precision oncology.
Collapse
Affiliation(s)
- Annika Windon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Nicole Mendelson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin Mclee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Kenrry Chiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Allyson J Ocean
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - José Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Manish Shah
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Debnath A, Singh RK, Mazumder R, Mazumder A, Srivastava S, Chaudhary H, Mangal S, Sanchitra J, Tyagi PK, Kumar Singh S, Singh AK. Quest for discovering novel CDK12 inhibitor. J Recept Signal Transduct Res 2025; 45:1-21. [PMID: 39697035 DOI: 10.1080/10799893.2024.2441185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
CDK12 is essential for cellular processes like RNA processing, transcription, and cell cycle regulation, inhibiting cancer cell growth and facilitating macrophage invasion. CDK12 is a significant oncogenic factor in various cancers, including HER2-positive breast cancer, Anaplastic thyroid carcinoma, Hepatocellular carcinoma, prostate cancer, and Ewing sarcoma. It is also regarded as a potential biomarker, emphasizing its broader significance in oncology. Targeting CDK12 offers a promising strategy to develop therapy. Various monoclonal antibodies have drawn wide attention, but they are expensive compared to small-molecule inhibitors, limiting their accessibility and affordability for patients. Consequently, this research aims to identify effective CDK12 inhibitors using comprehensive high-throughput virtual screening. RASPD protocol has been employed to screen three different databases against the target followed by drug-likeness, molecular docking, ADME, toxicity, Consensus molecular docking, MD Simulation, and in-vitro studies MTT assay. The research conducted yielded one compound ZINC11784547 has demonstrated robust binding affinity, favorable ADME features, less toxicity, remarkable stability, and cytotoxic effect. The identified compound holds promise for promoting cancer cell death through CDK12 inhibition.
Collapse
Affiliation(s)
- Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajesh Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Shikha Srivastava
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Hema Chaudhary
- School of Medical & Allied Sciences, K R Mangalam University, Gurugram, India
| | - Saloni Mangal
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Jahanvi Sanchitra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
5
|
Wang X, Qin ZL, Li N, Jia MQ, Liu QG, Bai YR, Song J, Yuan S, Zhang SY. Annual review of PROTAC degraders as anticancer agents in 2022. Eur J Med Chem 2024; 267:116166. [PMID: 38281455 DOI: 10.1016/j.ejmech.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Long Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Ru Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Kozicka Z, Suchyta DJ, Focht V, Kempf G, Petzold G, Jentzsch M, Zou C, Di Genua C, Donovan KA, Coomar S, Cigler M, Mayor-Ruiz C, Schmid-Burgk JL, Häussinger D, Winter GE, Fischer ES, Słabicki M, Gillingham D, Ebert BL, Thomä NH. Design principles for cyclin K molecular glue degraders. Nat Chem Biol 2024; 20:93-102. [PMID: 37679459 PMCID: PMC10746543 DOI: 10.1038/s41589-023-01409-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.
Collapse
Affiliation(s)
- Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biology, University of Basel, Basel, Switzerland
| | - Dakota J Suchyta
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Vivian Focht
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Petzold
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Monte Rosa Therapeutics, Basel, Switzerland
| | - Marius Jentzsch
- Institute of Clinical Chemistry and Clinical Pharmacology, University and University Hospital Bonn, Bonn, Germany
| | - Charles Zou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Yale University, New Haven, CT, USA
| | - Cristina Di Genua
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- VantAI, New York, NY, USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seemon Coomar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- IRB Barcelona-Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jonathan L Schmid-Burgk
- Institute of Clinical Chemistry and Clinical Pharmacology, University and University Hospital Bonn, Bonn, Germany
| | | | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
7
|
Kozicka Z. Gluing the pieces together. Science 2023; 382:779-780. [PMID: 37972173 DOI: 10.1126/science.adl4288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Illuminating the path to degrading troublesome proteins.
Collapse
Affiliation(s)
- Zuzanna Kozicka
- Dana-Farber Cancer Institute, Boston, MA, USA
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Yan Z, Du Y, Zhang H, Zheng Y, Lv H, Dong N, He F. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14:1629-1644. [PMID: 37731700 PMCID: PMC10507796 DOI: 10.1039/d3md00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that plays key roles in transcription, translation, mRNA splicing, the cell cycle, and DNA damage repair. Research has identified that high expression of CDK12 in organs such as the breast, stomach, and uterus can lead to HER2-positive breast cancer, gastric cancer and cervical cancer. Inhibiting high expression of CDK12 suppresses tumor growth and proliferation, suggesting that it is both a biomarker for cancer and a potential target for cancer therapy. CDK12 inhibitors can competitively bind the CDK12 hydrophobic pocket with ATP to avoid CDK12 phosphorylation, blocking subsequent signaling pathways. The development of CDK12 inhibitors is challenging due to the high homology of CDK12 with other CDKs. This review summarizes the research progress of CDK12 inhibitors, their mechanism of action and the structure-activity relationship, providing new insights into the design of CDK12 selective inhibitors.
Collapse
Affiliation(s)
- Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road Jinan 250022 China
| |
Collapse
|
9
|
Angelin A. Cyclin-dependent kinases regulate the adult nervous system via the one-carbon-metabolism. Cell Death Dis 2023; 14:429. [PMID: 37452015 PMCID: PMC10349070 DOI: 10.1038/s41419-023-05950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Araki S, Ohori M, Yugami M. Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities. Front Oncol 2023; 13:1152087. [PMID: 37342192 PMCID: PMC10277747 DOI: 10.3389/fonc.2023.1152087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulating evidence has indicated that pre-mRNA splicing plays critical roles in a variety of physiological processes, including development of multiple diseases. In particular, alternative splicing is profoundly involved in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics, and several splicing modulators are currently being developed for the treatment of patients with various cancers and are in the clinical trial stage. Novel molecular mechanisms modulating alternative splicing have proven to be effective for treating cancer cells resistant to conventional anticancer drugs. Furthermore, molecular mechanism-based combination strategies and patient stratification strategies for cancer treatment targeting pre-mRNA splicing must be considered for cancer therapy in the future. This review summarizes recent progress in the relationship between druggable splicing-related molecules and cancer, highlights small-molecule splicing modulators, and discusses future perspectives of splicing modulation for personalized and combination therapies in cancer treatment.
Collapse
|
11
|
Rao Z, Li K, Hong J, Chen D, Ding B, Jiang L, Qi X, Hu J, Yang B, He Q, Dong X, Cao J, Zhu CL. A practical "preTACs-cytoblot" platform accelerates the streamlined development of PROTAC-based protein degraders. Eur J Med Chem 2023; 251:115248. [PMID: 36905918 DOI: 10.1016/j.ejmech.2023.115248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
With the growing importance of PROTAC-mediated protein degradation in drug discovery, robust synthetic methodologies and rapid screening assays are urgently needed. By harnessing the improved alkene hydroazidation reaction, we developed a novel strategy to introduce azido groups into the linker-E3 ligand conjugates and effectively created a range of prepacked terminal azide-labeled "preTACs" as PROTAC toolkit building blocks. Moreover, we demonstrated that preTACs are ready to conjugate to ligands targeting a protein of interest to generate libraries of chimeric degraders, which are subsequently screened for effective protein degradation directly from cultured cells with a cytoblot assay. Our study exemplifies that this practical "preTACs-cytoblot" platform allows efficient PROTAC assembly and rapid activity assessments. It may help industrial and academic investigators to accelerate their streamlined development of PROTAC-based protein degraders.
Collapse
Affiliation(s)
- Zijian Rao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Kailin Li
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ju Hong
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Danni Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Baoli Ding
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Li Jiang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xuxin Qi
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiawen Hu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310016, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Centre for Drug Safety Evaluation and Research of ZJU, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310016, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Centre, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaowu Dong
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310016, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Centre, Zhejiang University, Hangzhou, 310058, PR China
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310016, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Centre, Zhejiang University, Hangzhou, 310058, PR China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, China.
| | - Cheng-Liang Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Centre for Drug Safety Evaluation and Research of ZJU, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310016, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, PR China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, China.
| |
Collapse
|