1
|
Tang J, Zhang Y, Zhou L, Song X, Wei Y, Qi J, Wu J, Song Z, Zhan L. Design, synthesis and biological evaluation of indoline-maleimide conjugates as potential antitumor agents for the treatment of colorectal cancer. Bioorg Med Chem 2024; 108:117786. [PMID: 38843656 DOI: 10.1016/j.bmc.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/17/2024]
Abstract
An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3β pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.
Collapse
Affiliation(s)
- Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yusi Wei
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Qi
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Baylot V, Le TK, Taïeb D, Rocchi P, Colleaux L. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. Commun Biol 2024; 7:489. [PMID: 38653753 PMCID: PMC11039704 DOI: 10.1038/s42003-024-06121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Rare diseases (RD) affect a small number of people compared to the general population and are mostly genetic in origin. The first clinical signs often appear at birth or in childhood, and patients endure high levels of pain and progressive loss of autonomy frequently associated with short life expectancy. Until recently, the low prevalence of RD and the gatekeeping delay in their diagnosis have long hampered research. The era of nucleic acid (NA)-based therapies has revolutionized the landscape of RD treatment and new hopes arise with the perspectives of disease-modifying drugs development as some NA-based therapies are now entering the clinical stage. Herein, we review NA-based drugs that were approved and are currently under investigation for the treatment of RD. We also discuss the recent structural improvements of NA-based therapeutics and delivery system, which overcome the main limitations in their market expansion and the current approaches that are developed to address the endosomal escape issue. We finally open the discussion on the ethical and societal issues that raise this new technology in terms of regulatory approval and sustainability of production.
Collapse
Affiliation(s)
- Virginie Baylot
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Thi Khanh Le
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - David Taïeb
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - Palma Rocchi
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Laurence Colleaux
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| |
Collapse
|
3
|
Okuyama R. Chronological Analysis of First-in-Class Drugs Approved from 2011 to 2022: Their Technological Trend and Origin. Pharmaceutics 2023; 15:1794. [PMID: 37513981 PMCID: PMC10386398 DOI: 10.3390/pharmaceutics15071794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The discovery and development of first-in-class (FIC) drugs are becoming increasingly important due to increasing reimbursement pressure and personalized medication. To investigate the technological trends and origin of FIC drugs, the FIC drugs approved in the U.S. from January 2011 to December 2022 were analyzed. The analysis shows that previous major target families, viz. enzymes, G-protein coupled receptors, transporters, and transcription factors, are no longer considered major in recent years. Instead, the shares of secreted proteins/peptides and mRNAs have continuously increased from 2011-2014 to 2019-2022, suggesting that the target family of FIC drugs has shifted to molecules previously considered challenging as drug targets. Small molecules were predominant in 2011-2014, followed by a large increase in antibody medicines in 2015-2018 and further diversification of antibody medicine modalities in 2019-2022. Nucleic acid medicine has also continuously increased its share, suggesting that diversifying modalities supports the creation of FIC drugs toward challenging target molecules. Over half of FIC drugs were created by small and medium enterprises (SMEs), especially young companies established in the 1990s and 2000s. All SMEs that produced more than one FIC drug approved in 2019-2022 have the strong technological capability in a specific modality. Investment in modality technologies and facilitating mechanisms to translate academic modality technologies to start-ups might be important for enhancing FIC drug development.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan
| |
Collapse
|