1
|
Rogalewicz B, Czylkowska A. Recent advances in the discovery of copper(II) complexes as potential anticancer drugs. Eur J Med Chem 2025; 292:117702. [PMID: 40328033 DOI: 10.1016/j.ejmech.2025.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/13/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This review article offers a literature search of the most active, new copper (II) anticancer complexes based on nitrogen-containing ligands, reported in the literature over the past 5 years: from the beginning of 2019, until mid-2024. In the modern world, cancer remains one of the deadliest diseases of all. Although years of the ongoing research allowed us to better understand its nature, and thus aim more precisely at specific molecular targets and pathways, many of its aspects remain unclear. Today, chemotherapy still remains at the forefront of cancer treatment. With the ever-growing struggles to overcome chemoresistance and occurrence of serious side effects, the discovery of new, more selective and active drugs is a task of an utmost importance. At the same time, copper (II)-based compounds offer a wide array of biological activities and valuable biochemical properties. This review article provides the update on the recent advances in the discovery of new potential anticancer drugs among copper (II)-based compounds in the recent five years.
Collapse
Affiliation(s)
- Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
2
|
Silva CMF, Lino RC, de Moura MCT, de Sá Borges AP, de Oliveira Júnior RJ. Innovative Approaches in the Synthesis and Optimization of Copper Complexes for Antitumor Therapies: A Comprehensive Review. Molecules 2025; 30:2104. [PMID: 40430277 PMCID: PMC12114317 DOI: 10.3390/molecules30102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Cancer is the second leading cause of death worldwide. Late diagnosis, low drug selectivity, high toxicity, and treatment resistance are challenges associated with pharmacological interventions. The commonly used therapies include surgery, radiotherapy, hormonal therapy, immunotherapy, and chemotherapy. Recently, Cu complexes have been studied owing to their biological functions and effects on tumor angiogenesis. In this review, we examined 23 types of cancer and revealed the use of cell lines. The synthesis of Cu complexes with ligands such as phenanthroline and thiosemicarbazones has also been reported. Such co-ligation is promising because of its high cytotoxicity and selectivity. Compared with cisplatin, Cu complexes, especially mixed complexes, showed better interactions with DNA, generating reactive oxygen species and inducing apoptosis. Nanoformulations have also been adopted to improve the pharmacological activity of compounds. They enhance the efficacy of complexes by targeting them to the tumor tissue, thereby improving their safety. Studies have also explored Cu complexes with clinically relevant pharmacophores, suggesting a "hybrid chemotherapy" against resistant tumors. Overall, Cu complexes have demonstrated therapeutic versatility, antitumor efficacy, and reduced adverse effects, showing great potential as alternatives to conventional chemotherapy and justifying future clinical investigations to validate their use.
Collapse
Affiliation(s)
- Clara Maria Faria Silva
- Laboratory of Cytogenetics, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Piaui s/n, Uberlândia 38405-320, MG, Brazil (R.C.L.)
| | - Ricardo Campos Lino
- Laboratory of Cytogenetics, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Piaui s/n, Uberlândia 38405-320, MG, Brazil (R.C.L.)
| | - Mariana Cristina Teixeira de Moura
- Laboratory of Cytogenetics, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Piaui s/n, Uberlândia 38405-320, MG, Brazil (R.C.L.)
| | - Anna Paula de Sá Borges
- Academic Institute of health and biological Sciencies, State University of Goiás, UnU Itumbiara, Av. Modesto de Carvalho, s/n, District Agro. Industrial, Itumbiara 75536-100, GO, Brazil
| | - Robson José de Oliveira Júnior
- Laboratory of Cytogenetics, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Piaui s/n, Uberlândia 38405-320, MG, Brazil (R.C.L.)
| |
Collapse
|
3
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
4
|
Chen Y, Ke Z, Yuan L, Liang M, Zhang S. Hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline complexes as potential anticancer agents: synthesis, characterization and anticancer evaluation. Dalton Trans 2023; 52:12318-12331. [PMID: 37591821 DOI: 10.1039/d3dt01750h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We synthesized and analyzed nine unique copper(II) hydrazylpyridine salicylaldehyde and 1,10-phenanthroline complexes, [Cu(L1a)(phen)] (Cugdupt1), [Cu(L2a)(phen)]·(CH3CN) (Cugdupt2), [Cu(L3a)(phen)] (Cugdupt3), [Cu(L4a)(phen)]·(CH3CN) (Cugdupt4), [Cu(L5a)(phen)] (Cugdupt5), [Cu(L6a)(phen)] (Cugdupt6), [Cu(L7a)(phen)] (Cugdupt7) [Cu(L8a)(phen)] (Cugdupt8) and [Cu(L9a)(phen)]·0.5(H2O) (Cugdupt9). We were motivated by the intriguing properties of the coupled ligands of hydrazylpyridine, salicylaldehyde, and 1,10-phenanthroline. The MTT assay demonstrated that Cugdupt1-Cugdupt9 have higher anticancer activity than L1H2-L9H2, phen and cisplatin on A549/DDP cancer cells (A549cis). Cugdupt1-Cugdupt9 were superior to cisplatin with IC50 values of 1.6-100.0 fold on A549cis cells (IC50(Cugdupt1-Cugdupt9) = 0.5-30.5 μM, IC50(cisplatin) = 61.5 ± 1.0 μM). However, Cugdupt1-Cugdupt9 had lower cytotoxicity toward the HL-7702 normal cells. Cugdupt1 and Cugdupt8 can induce reduction of mitochondrial respiratory chain complexes I/IV (MRCC-I/IV), mitophagy pathways, and eventually protein regulation and adenosine triphosphate (ATP) depletion in A549cis cells. The findings indicated that Cugdupt1 and Cugdupt8 caused cell death via both ATP diminution and mitophagy pathways. Finally, Cugdupt8 demonstrated high efficacy and no obvious cytotoxicity in A549 tumor-bearing mice. This study thus helps evaluate the potential of the hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline compounds for cisplatin-resistant tumor therapy.
Collapse
Affiliation(s)
- Yating Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Lingyu Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Meixiang Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| |
Collapse
|