1
|
Yao Y, Xu Z, Ding H, Yang S, Chen B, Zhou M, Zhu Y, Yang A, Yan X, Liang C, Kou X, Chen B, Huang W, Li Y. Carrier-free nanoparticles-new strategy of improving druggability of natural products. J Nanobiotechnology 2025; 23:108. [PMID: 39953594 PMCID: PMC11827262 DOI: 10.1186/s12951-025-03146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
There are abundant natural products resources and extensive clinical use experience in China. However, the active components of natural products generally have problems such as poor water solubility and low bioavailability, which limit their druggability. Carrier-free nanoparticles, such as nanocrystals, self-assembled nanoparticles, and extracellular vesicles derived from both animal and plant sources, have great application potential in improving the safety and efficacy of drugs due to their simple and flexible preparation methods, high drug loading capacity and delivery efficiency, as well as long half-life in blood circulation. It has been widely used in biomedical fields such as anti-tumor, anti-bacterial, anti-inflammatory and anti-oxidation. Therefore, based on the natural products that have been used in clinic, this review focuses on the advantages of carrier-free nanoparticles in delivering active compounds, in order to improve the delivery process of natural products in vivo and improve their draggability.
Collapse
Affiliation(s)
- Yaqi Yao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenna Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haoran Ding
- College of Pharmacy, Shandong Xiandai University, Jinan, 250104, China
| | - Shenshen Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bohan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengjiao Zhou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yehan Zhu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Aihong Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenrui Liang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yubo Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Zeng X, Sheng Z, Zhang Y, Xiao J, Li Y, Zhang J, Xu G, Jia J, Wang M, Li L. The therapeutic potential of glycyrrhizic acid and its metabolites in neurodegenerative diseases: Evidence from animal models. Eur J Pharmacol 2024; 985:177098. [PMID: 39510337 DOI: 10.1016/j.ejphar.2024.177098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Neurodegenerative diseases, mostly occurring in the elderly population, are the significant cause of disability and death worldwide. The pathogenesis of neurodegenerative diseases is still largely unknown yet, although they have been continuously explored. Thus, there is still a lack of safe, effective, and low side effect drugs in clinical practice for the treatment of neurodegenerative diseases. Pieces of accumulating evidence have demonstrated that licorice played neuroprotective roles in various neurodegenerative diseases. In the past two decades, increasing studies have indicated that glycyrrhizic acid (GL), the main active ingredient from traditional Chinese medicine licorice (widely used in the food industry) and a triterpenoid saponin with multiple pharmacological effects (such as anti-oxidant, anti-inflammatory, and immune regulation), and its metabolites (glycyrrhetinic acid and carbenoxolone) play a neuroprotective role in a range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and epilepsy. This review will elaborate on the multiple neuroprotective mechanisms of GL and its metabolites in this series of diseases, aiming to provide a basis for further research on these protective drugs for neurodegenerative diseases and their clinical application. In summary, GL may be a promising candidate drug for the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, 314001, China; Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Guangtao Xu
- Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Min Wang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| |
Collapse
|
4
|
Guo M, Peng J, Guo P, Wang Q, Zhang L, Shen H, Chen F, Zhang P, Lin S, Gao H, Peng H, Mou R, Huang J, Wang J, Luo YS, Zhang K. Inhalation of 2, 4-di-tert-butylphenol-Loaded micelles suppresses respiratory syncytial virus infection in mice. Antiviral Res 2024; 226:105880. [PMID: 38608838 DOI: 10.1016/j.antiviral.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Human respiratory syncytial virus (RSV) is a common cause of respiratory infections in infants, young children, and elderly people. However, there are no effective treatments or vaccines available in most countries. In this study, we explored the anti-RSV potential of 2, 4-Di-tert-butylphenol (2, 4-DTBP), a compound derived from Houttuynia cordata Thunb. To overcome the poor solubility of 2, 4-DTBP, we encapsulated it in polymeric micelles and delivered it by inhalation. We found that 2, 4-DTBP-loaded micelles inhibited RSV infection in vitro and improved survival, lung pathology, and viral clearance in RSV-infected mice. Our results suggested that 2, 4-DTBP-loaded micelle is a promising novel therapeutic agent for RSV infection.
Collapse
Affiliation(s)
- Mingyang Guo
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Pengcheng Guo
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai 201203, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Lin Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Huyan Shen
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Fang Chen
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Pingping Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Siyu Lin
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Han Gao
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Hong Peng
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Rong Mou
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai 201203, China
| | - Yu-Si Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Emergency, Liupanshui Hospital of The Affiliated Hospital of Guizhou Medical University, Liupanshui 553000, China.
| | - Ke Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
5
|
Zhang J, Li Y, Xie S, Lou H, Chen H, Zhang G. Baicalein glycymicelle ophthalmic solution: Preparation, in vitro antimicrobial activities, and antimicrobial mechanism evaluations. Int J Pharm 2024; 654:123964. [PMID: 38430948 DOI: 10.1016/j.ijpharm.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The purpose of this study was to develop a novel baicalein (BAI) loaded glycymicelle ophthalmic solution with small molecule phytochemical glycyrrhizin as nanocarriers and to explore this solution's potential as an antimicrobial agent against ocular infections. The optimized BAI glycymicelles had a high encapsulation efficiency (98.76 ± 1.25 %), a small particle size (54.38 ± 2.41 nm), a uniform size distribution (polydispersity index = 0.293 ± 0.083), and a zeta potential of -28.3 ± 1.17 mV. The BAI glycymicelle ophthalmic solution exhibited an excellent short-term storage stability. BAI glycymicelles significantly increased the apparent solubility and in vitro release capability of BAI. The BAI glycymicelle ophthalmic solution exhibited no hen's egg-chorioallantoic membrane' irritation and strong in vivo ocular tolerance in rabbits. The BAI glycymicelles noticeably enhanced the in vivo corneal permeation. The BAI glycymicelles also precipitated increased in vitro antioxidant activity and significantly improved in vitro antipathogen activities. Various antimicrobial mechanisms, including the destruction of the bacterial cell wall, damage to the bacterial cell membranes, interruptions to the biofilm structure, and the apoptosis of bacteria, were inflicted on BAI glycymicelles. These findings provided useful knowledge regarding the development of a novel ophthalmic solution and formulation of BAI.
Collapse
Affiliation(s)
- Jing Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuhang Li
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Sibin Xie
- Qingdao Central Medical Group, Qingdao, China
| | - Huadong Lou
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Hao Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Guowen Zhang
- The Eighth People's Hospital of Qingdao, Qingdao, China.
| |
Collapse
|
6
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
7
|
Kim JH, Park YI, Hur M, Park WT, Moon YH, Huh YC, Kim TIL, Kang MH, Kang JS, Cho CW, Park J. Inhibition by components of Glycyrrhiza uralensis of 3CLpro and HCoV-OC43 proliferation. J Enzyme Inhib Med Chem 2023; 38:2242704. [PMID: 37537881 PMCID: PMC10405751 DOI: 10.1080/14756366.2023.2242704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 3CLpro is a key enzyme in coronavirus proliferation and a treatment target for COVID-19. In vitro and in silico, compounds 1-3 from Glycyrrhiza uralensis had inhibitory activity and binding affinity for 3CLpro. These compounds decreased HCoV-OC43 cytotoxicity in RD cells. Moreover, they inhibited viral growth by reducing the amounts of the necessary proteins (M, N, and RDRP). Therefore, compounds 1-3 are inhibitors of 3CLpro and HCoV-OC43 proliferation.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Mok Hur
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Woo Tae Park
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Youn-Ho Moon
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Yun-Chan Huh
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Tae IL Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Min Hye Kang
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
8
|
Zuo J, Meng T, Wang Y, Tang W. A Review of the Antiviral Activities of Glycyrrhizic Acid, Glycyrrhetinic Acid and Glycyrrhetinic Acid Monoglucuronide. Pharmaceuticals (Basel) 2023; 16:ph16050641. [PMID: 37242424 DOI: 10.3390/ph16050641] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licorice, a natural medicine derived from the roots and rhizomes of Glycyrrhiza species, possesses a wide range of therapeutic applications, including antiviral properties. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) is the active metabolite of GL. GL and its metabolites have a wide range of antiviral activities against viruses, such as, the hepatitis virus, herpes virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and so on. Although their antiviral activity has been widely reported, the specific mechanism of action involving multiple links such as the virus itself, cells, and immunity are not clearly established. In this review, we will give an update on the role of GL and its metabolites as antiviral agents, and detail relevant evidence on the potential use and mechanisms of actions. Analyzing antivirals, their signaling, and the impacts of tissue and autoimmune protection may provide promising new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|