1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Wong SF, Goh JK. A comprehensive review of fused imidazonaphthyridine derivatives: Synthetic approaches and biological applications. Bioorg Med Chem 2025; 122:118141. [PMID: 40058273 DOI: 10.1016/j.bmc.2025.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Fused heterocyclic imidazonaphthyridine compounds stand at the forefront of global research, captivating remarkable interest in medicinal and synthetic organic chemistry. These compounds possess a range of potent biological and pharmacological properties, rendering them invaluable for medical and therapeutic research, particularly in drug design and discovery. Despite their significance, no dedicated review has focused on fused heterocyclic imidazonaphthyridine derivatives. This comprehensive review aims to consolidate and explore the cutting-edge synthesis approaches tailored specifically for these unique imidazonaphthyridine derivatives. It highlights their current applications in various biological realms and provides insights into potential future trajectories. By steering forthcoming research endeavours towards innovative design and synthesis of novel imidazonaphthyridines, this review seeks to diversify these compounds, paving the way for biological applications that have yet to be fully realized. Overall, as a burgeoning area of research, this review underscores the potential of imidazonaphthyridines as promising candidates for biomedical applications, offering a snapshot of current research and suggesting future avenues for investigation.
Collapse
Affiliation(s)
- Siew Fang Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Joo Kheng Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Mekala S, Wu Y, Li YM. Strategies of positron emission tomography (PET) tracer development for imaging of tau and α-synuclein in neurodegenerative disorders. RSC Med Chem 2024:d4md00576g. [PMID: 39678127 PMCID: PMC11638850 DOI: 10.1039/d4md00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by the presence of extracellular amyloid plaques consisting of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau (pTau) protein in the brain. Genetic and animal studies strongly indicate that Aβ, tau and neuroinflammation play important roles in the pathogenesis of AD. Several staging models showed that NFTs correlated well with the disease progression. Positron emission tomography (PET) imaging has become a widely used non-invasive technique to image NFTs for early diagnosis of AD. Despite the remarkable progress made over the past few years, tau PET imaging is still challenging due to the nature of tau pathology and the technical aspects of PET imaging. Tau pathology often coexists with other proteinopathies, such as Aβ plaques and α-synuclein aggregates. Distinguishing tau-specific signals from other overlapping pathologies is difficult, especially in the context of AD, where multiple protein aggregates are present, as well as the spectrum of different tau isoforms (3R and 4R) and conformations. Moreover, tracers should ideally have optimal pharmacokinetic properties to penetrate the blood-brain barrier (BBB) while maintaining specificity, low toxicity, low non-specific binding, rapid uptake and clearance from the brain, and formation of no radiolabeled metabolites in the brain. On the other hand, Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the abnormal accumulations of α-synuclein in neurons. Heterogeneity and the unclear pathogenesis of PD hinder early and accurate diagnosis of the disease for therapeutic development in clinical use. In this review, while referring to existing reviews, we focus on the design strategies and current progress in tau (NFTs) targeting new PET tracers for AD; evolution of non-AD tau targeting PET tracers for applications including progressive supranuclear paralysis (PSP) and corticobasal degeneration (CBD); new PET tracer development for α-synuclein aggregate imaging in PD and giving an outlook for future PET tracer development.
Collapse
Affiliation(s)
- Shekar Mekala
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
| | - You Wu
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| |
Collapse
|
4
|
Cao P, Fan G, Zhao X, Ren X, Wang Y, Wang Y, Gao Q. Regioselective synthesis of 3,4-diarylpyrimido[1,2- b]indazole derivatives enabled by iron-catalyzed ring-opening of styrene oxides. Chem Commun (Camb) 2024; 60:11742-11745. [PMID: 39319418 DOI: 10.1039/d4cc03910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The first synthesis of 3,4-diarylpyrimido[1,2-b]indazole derivatives from 3-aminoindazoles has been realized. The FeCl3-catalyzed intermolecular epoxide ring-opening reaction altered the order of annulation, with the free primary NH2 groups in 3-aminoindazoles preferentially reacting with styrene oxides instead of aromatic aldehydes. This protocol is further highlighted by its broad substrate compatibility, high chemo- and regioselectivities, and the late-stage modifications of bioactive molecules. Without aromatic aldehydes, the synthesis of 3-aryl-4-acylpyrimido[1,2-b]indazole derivatives can also be accomplished using alternative reaction conditions.
Collapse
Affiliation(s)
- Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xiaofei Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xinyu Ren
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuru Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
5
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
6
|
DaSilva J, Decristoforo C, Mach RH, Bormans G, Carlucci G, Al-Qahtani M, Duatti A, Gee AD, Szymanski W, Rubow S, Hendrikx J, Yang X, Jia H, Zhang J, Caravan P, Yang H, Zeevaart JR, Rodriquez MA, Oliveira RS, Zubillaga M, Sakr T, Spreckelmeyer S. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2023; 8:35. [PMID: 37889361 PMCID: PMC10611660 DOI: 10.1186/s41181-023-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | | | | - Peter Caravan
- Massuchusetts General Hospital, Harvard University, Boston, USA
| | | | | | | | - Ralph Santos Oliveira
- Brazilian Association of Radiopharmacy Brazil, Brazilian Nuclear Energy Commission - Nuclear Engineering Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tamer Sakr
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
7
|
Xia Q, Wang Z, Wan W, Feng H, Sun R, Jing B, Ge Y, Liu Y. Fluorene-based tau fibrillation sensor and inhibitor with fluorogenic and photo-crosslinking properties. Chem Commun (Camb) 2023; 59:10008-10011. [PMID: 37522834 DOI: 10.1039/d3cc02581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Tau protein aggregation into neurofibrillary tangles often causes tauopathies. Herein, we report fluorene based sensors with fluorogenicity upon binding to tau proteins. Intriguingly, these sensors possess triplet state properties to inhibit tau fibrillation upon photo-induced crosslinking.
Collapse
Affiliation(s)
- Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Huan Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Jing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Yusong Ge
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|