1
|
Raucci A, Castiello C, Mai A, Zwergel C, Valente S. Heterocycles-Containing HDAC Inhibitors Active in Cancer: An Overview of the Last Fifteen Years. ChemMedChem 2024; 19:e202400194. [PMID: 38726979 DOI: 10.1002/cmdc.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Indexed: 08/30/2024]
Abstract
Cancer is one of the primary causes of mortality worldwide. Despite nowadays are numerous therapeutic treatments to fight tumor progression, it is still challenging to completely overcome it. It is known that Histone Deacetylases (HDACs), epigenetic enzymes that remove acetyl groups from lysines on histone's tails, are overexpressed in various types of cancer, and their inhibition represents a valid therapeutic strategy. To date, some HDAC inhibitors have achieved FDA approval. Nevertheless, several other potential drug candidates have been developed. This review aims primarily to be comprehensive of the studies done so far regarding HDAC inhibitors bearing heterocyclic rings since their therapeutic potential is well known and has gained increasing interest in recent years. Hence, inserting heterocyclic moieties in the HDAC-inhibiting scaffold can be a valuable strategy to provide potent and/or selective compounds. Here, in addition to summarizing the properties of novel heterocyclic HDAC inhibiting compounds, we also provide ideas for developing new, more potent, and selective compounds for treating cancer.
Collapse
Affiliation(s)
- Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carola Castiello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
2
|
Yang Z, Guo B, Jiao Z, Wang X, Huang L, Tang C, Wang F. Histone Deacetylase 6 Inhibitor 5-Phenylcarbamoylpentyl Selenocyanide (SelSA) Suppresses Hepatocellular Carcinoma by Downregulating Phosphorylation of the Extracellular Signal-Regulated Kinase 1/2 Pathway. ACS Pharmacol Transl Sci 2024; 7:2196-2203. [PMID: 39022367 PMCID: PMC11249628 DOI: 10.1021/acsptsci.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Histone deacetylase 6 (HDAC6) enzyme plays a crucial role in a variety of cellular processes related to cancer, and inhibition of HDAC6 is emerging as an effective strategy for cancer treatment. Although several hydroxamate-based HDAC6 inhibitors showed promising anticancer activities, the intrinsic defects such as poor selectivity, stability, and pharmacokinetics limited their application. In this study, a potent selenocyanide-bearing HDAC6 inhibitor, 5-phenylcarbamoylpentyl selenocyanide (SelSA), was evaluated for its antihepatocellular carcinoma (HCC) activity and further explored for its antitumor mechanisms. In vitro studies demonstrated that SelSA exhibited excellent antiproliferative activity against three HCC cells HepG2 (2.3 ± 0.29 μM), Huh7 (0.83 ± 0.48 μM), and LM3 (2.6 ± 0.24 μM). Further studies indicated that SelSA could downregulate the expression of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, inhibit the growth, invasion, and migration of Huh7 cells, and promote their apoptosis. Moreover, SelSA significantly suppressed tumor growth in Huh7 xenograft mouse models. Our findings suggest that SelSA could be a potential therapeutic agent for HCC.
Collapse
Affiliation(s)
- Zeping Yang
- Engineering
Research Center of Molecular and Neuro Imaging, Ministry of Education,
School of Life Science and Technology, Xidian
University, Xi’an 710126, Shaanxi, China
| | - Bin Guo
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Institute
of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zihao Jiao
- Engineering
Research Center of Molecular and Neuro Imaging, Ministry of Education,
School of Life Science and Technology, Xidian
University, Xi’an 710126, Shaanxi, China
| | - Xinan Wang
- Engineering
Research Center of Molecular and Neuro Imaging, Ministry of Education,
School of Life Science and Technology, Xidian
University, Xi’an 710126, Shaanxi, China
| | - Liyu Huang
- Engineering
Research Center of Molecular and Neuro Imaging, Ministry of Education,
School of Life Science and Technology, Xidian
University, Xi’an 710126, Shaanxi, China
| | - Chu Tang
- Engineering
Research Center of Molecular and Neuro Imaging, Ministry of Education,
School of Life Science and Technology, Xidian
University, Xi’an 710126, Shaanxi, China
| | - Fu Wang
- Institute
of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Xianyang
Key Laboratory of Molecular Imaging and Drug Synthesis, School of
Pharmacy, Shaanxi University of International
Trade & Commerce, Xianyang 712046, Shaanxi, China
| |
Collapse
|
3
|
Fiorentino F, Fabbrizi E, Raucci A, Noce B, Fioravanti R, Valente S, Paolini C, De Maria R, Steinkühler C, Gallinari P, Rotili D, Mai A. Uracil- and Pyridine-Containing HDAC Inhibitors Displayed Cytotoxicity in Colorectal and Glioblastoma Cancer Stem Cells. ChemMedChem 2024; 19:e202300655. [PMID: 38529661 DOI: 10.1002/cmdc.202300655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cancer stem cells (CSCs) are a niche of highly tumorigenic cells featuring self-renewal, activation of pluripotency genes, multidrug resistance, and ability to cause cancer relapse. Seven HDACi (1-7), showing either hydroxamate or 2'-aminoanilide function, were tested in colorectal cancer (CRC) and glioblastoma multiforme (GBM) CSCs to determine their effects on cell proliferation, H3 acetylation levels and in-cell HDAC activity. Two uracil-based hydroxamates, 5 and 6, which differ in substitution at C5 and C6 positions of the pyrimidine ring, exhibited the greatest cytotoxicity in GBM (5) and CRC (6) CSCs, followed by the pyridine-hydroxamate 2, with 2- to 6-fold higher potency than the positive control SAHA. Finally, increased H3 acetylation as well as HDAC inhibition directly in cells by selected 2'-aminoanilide 4 and hydroxamate 5 confirmed target engagement. Further investigation will be conducted into the broad-spectrum anticancer properties of the most potent derivatives and their effects in combination with approved, conventional anticancer drugs.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Chantal Paolini
- IRBM S.p.A., Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092, Cinisello Balsamo, Italy
| | - Paola Gallinari
- Exiris S.r.l., Tecnopolo Castel, Romano, Via Castel Romano 100, 00128, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. de Aldo Moro n. 5, 00185, Rome, Italy
| |
Collapse
|
4
|
Barreca M, Bertoni F, Barraja P. New strategies to hit hematological cancers. Eur J Med Chem 2024; 270:116350. [PMID: 38582688 DOI: 10.1016/j.ejmech.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
El-Zoghbi MS, Bass AK, A Abuo-Rahma GED, Mohamed MF, Badr M, Al-Ghulikah HA, Abdelhafez ESM. Design, synthesis and mechanistic study of new dual targeting HDAC/tubulin inhibitors. Future Med Chem 2024; 16:601-622. [PMID: 38436113 DOI: 10.4155/fmc-2023-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Aim: The purpose of this work is to create and synthesize a new class of chemicals: 3-cyano-2-substituted pyridine compounds with expected multitarget inhibition of histone deacetylase (HDAC) and tubulin. Materials & methods: The target compounds (3a-c, 4a-c and 5a-c) were synthesized utilizing 6-(4-methoxyphenyl)-2-oxo-4-(3,4,5-trimethoxyphenyl)-3-cyanopyridine, with various linkers and zinc-binding groups (ZBGs). Results: Most of the tested compounds showed promising growth inhibition, and hydroxamic acid-containing hybrids possessed higher HDAC inhibition than other ZBGs. Compound 4b possessed the highest potency; however, it showed the most tubulin polymerization inhibition. Docking studies displayed good binding into HDAC1 and six pockets and tubulin polymerization protein. Conclusion: Compound 4b could be considered a good antitumor candidate to go further into in vivo and clinical studies.
Collapse
Affiliation(s)
- Mona S El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Egypt
| | - Amr Ka Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Mamdouh Fa Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Hanan A Al-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | | |
Collapse
|
6
|
Zhang T, Zhou C, Lv M, Yu J, Cheng S, Cui X, Wan X, Ahmad M, Xu B, Qin J, Meng X, Luo H. Trifluoromethyl quinoline derivative targets inhibiting HDAC1 for promoting the acetylation of histone in cervical cancer cells. Eur J Pharm Sci 2024; 194:106706. [PMID: 38244809 DOI: 10.1016/j.ejps.2024.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Cervical cancer is the leading cause of death among gynecological malignant tumors, especially due to the poor prognosis of patients with advanced tumors due to recurrence, metastasis, and chemotherapy resistance. Therefore, exploring new antineoplastic drugs with high efficacy and low toxicity may bring new expectations in patients with cervical cancer. Natural products and their derivatives exert an antitumor activity. Therefore, in this work, combined with network pharmacology analysis and experimental validation, we investigated the anti-cervical cancer activity and molecular mechanism of a new trifluoromethyl quinoline (FKL) derivative in vivo and in vitro. FKL117 inhibited the proliferation of cervical cancer cells in a dose and time-dependent manner, induced apoptosis in HeLa cells, arrested the cell cycle in the G2/M phase, and regulated the expression of the apoptotic and cell cycle-related proteins Bcl-2, Bax, cyclin B1, and CDC2. We used online databases to obtain HDAC1 as one of the possible targets of FKL117 and the target binding and binding affinity were modeled by molecular docking. The results showed that FKL117 formed a hydrogen bond with HDAC1 and had good binding ability. We found that FKL117 targeted to inhibit the expression and function of HDAC1 and increased the acetylation of histone H3 and H4, which was also confirmed in vivo. The migration of HMGB1 from the nucleus to the cytoplasm further verified the above results. In conclusion, our study suggested that FKL117 might be used as a novel candidate for targeting the inhibition of HDAC1 against cervical cancer.
Collapse
Affiliation(s)
- Ting Zhang
- College of Clinical Medicine, Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Changhua Zhou
- College of Clinical Medicine, Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Mengfan Lv
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xudong Cui
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xinwei Wan
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Mashaal Ahmad
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Juan Qin
- College of Clinical Medicine, Guizhou Medical University, Guiyang 550004, China; The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, China.
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| | - Heng Luo
- College of Clinical Medicine, Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| |
Collapse
|
7
|
Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: Histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262:115879. [PMID: 37875056 DOI: 10.1016/j.ejmech.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Boissavy T, Rotili D, Mouveaux T, Roger E, Aliouat EM, Pierrot C, Valente S, Mai A, Gissot M. Hydroxamate-based compounds are potent inhibitors of Toxoplasma gondii HDAC biological activity. Antimicrob Agents Chemother 2023; 67:e0066123. [PMID: 37850734 PMCID: PMC10648960 DOI: 10.1128/aac.00661-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/27/2023] [Indexed: 10/19/2023] Open
Abstract
Toxoplasmosis is a critical health issue for immune-deficient individuals and the offspring of newly infected mothers. It is caused by a unicellular intracellular parasite called Toxoplasma gondii that is found worldwide. Although efficient drugs are commonly used to treat toxoplasmosis, serious adverse events are common. Therefore, new compounds with potent anti-T. gondii activity are needed to provide better suited treatments. We have tested compounds designed to target specifically histone deacetylase enzymes. Among the 55 compounds tested, we identified three compounds showing a concentration of drug required for 50% inhibition (IC50) in the low 100 nM range with a selectivity index of more than 100. These compounds are not only active at inhibiting the growth of the parasite in vitro but also at preventing some of the consequences of the acute disease in vivo. Two of these hydroxamate based compound also induce a hyper-acetylation of the parasite histones while the parasitic acetylated tubulin level remains unchanged. These findings suggest that the enzymes regulating histone acetylation are potent therapeutic targets for the treatment of acute toxoplasmosis.
Collapse
Affiliation(s)
- Tom Boissavy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco "Sapienza" Università di Roma, Rome, Italy
| | - Thomas Mouveaux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Emmanuel Roger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - El Moukthar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco "Sapienza" Università di Roma, Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco "Sapienza" Università di Roma, Rome, Italy
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|