1
|
Bollu VS, Chen YC, Zhang F, Gowda K, Amin S, Sharma AK, Schell TD, Zhu J, Robertson GP. Managing telomerase and telomere dysfunction in acral melanoma. Pharmacol Res 2025; 215:107700. [PMID: 40097124 DOI: 10.1016/j.phrs.2025.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Acral Lentiginous Melanoma is a rare and aggressive subtype of melanoma that commonly affects the palms, soles, and nail beds. It is more prevalent in individuals with darker skin tones, including Asian, African, and Hispanic populations. Unlike cutaneous melanomas, acral melanoma is not associated with UV exposure and has a distinct genetic and molecular profile, underscoring the need for tailored research and treatment strategies. Standard treatments, such as surgery, chemotherapy, immunotherapy, and targeted therapies, have shown limited success for this melanoma subtype, highlighting the urgency of developing more effective interventions. Telomerase is an enzyme that extends telomeres and is a key target in acral melanoma which exhibits' high telomerase activity, driven by mutations in the telomerase reverse transcriptase TERT promoter, which contributes to uncontrolled tumor cell proliferation, cancer cell immortality, and resistance to conventional therapies. Therefore, targeting telomerase presents a promising therapeutic avenue for acral melanoma patients who do not respond well to current treatments. Several approaches for targeting telomerase deregulation have been developed, and their potential for the management of acral melanoma is discussed in this review. Specifically, the promise of telomerase-targeted therapies for acral melanoma is emphasized and explores how these strategies could improve outcomes for patients with this challenging skin cancer. By focusing on the role of telomerase in tumorigenesis and treatment resistance, telomerase-targeted strategies hold potential as a foundational component of therapies for acral melanoma, complementing existing approaches.
Collapse
Affiliation(s)
- Vishnu Sravan Bollu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Yu-Chi Chen
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Fan Zhang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jiyue Zhu
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma and Skin Cancer Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma Therapeutics Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
2
|
Thomas X. Examining the safety and efficacy of imetelstat in low-risk myelodysplastic syndrome. Expert Opin Pharmacother 2025; 26:525-533. [PMID: 39989126 DOI: 10.1080/14656566.2025.2471518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION The aim of treatment in very low-, low- and intermediate-1-risk myelodysplastic syndrome (MDS) is mainly to relieve symptoms due to cytopenias. Only a few therapeutic drugs are currently available, but novel drugs are under clinical investigations. In this setting, imetelstat, a telomerase inhibitor, is a promising new agent. AREAS COVERED This review summarizes promising emerging strategies using imetelstat for the treatment of lower-risk MDS. EXPERT OPINION Favorable results were demonstrated in the IMerge phase 3 clinical trial using imetelstat in transfusion-dependent patients with lower-risk MDS relapsed or refractory to erythropoiesis-stimulating agents (ESAs). This study led to imetelstat approval by the United States Food and Drug Administration (FDA) in June 2024.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Department of Clinical Hematology, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
3
|
Kaur D, Chopra M, Saluja D. Exploiting the Achilles' heel of cancer through a structure-based drug-repurposing approach and experimental validation of top drugs using the TRAP assay. Mol Divers 2025:10.1007/s11030-025-11162-1. [PMID: 40087255 DOI: 10.1007/s11030-025-11162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Telomerase, a reverse transcriptase implicated in replicative immortality of cancers, remains a challenging target for therapeutic intervention due to its structural complexity and the absence of clinically approved small-molecule inhibitors. In this study, we explored drug repurposing as a pragmatic approach to address this gap, leveraging FDA-approved drugs to accelerate the identification of potential telomerase inhibitors. Using a structure-based drug discovery framework, we screened the DrugBank database through a previously validated pharmacophore model for the FVYL pocket in the hTERT thumb domain, the established binding site of BIBR1532. This was followed by molecular docking, pharmacokinetic filtering, and molecular dynamics (MD) simulations to evaluate the stability of protein-ligand complexes. Binding free energy calculations (MM-PBSA and MM-GBSA) were employed for cross-validation, identifying five promising candidates. Experimental validation using the Telomerase Repeat Amplification Protocol (TRAP) assay confirmed the inhibitory potential of Raltitrexed, showing significant inhibition with IC50 8.899 µM in comparison to control. Decomposition analysis and Structure-Activity Relationship (SAR) studies further offered insights into the binding mechanism, reinforcing the utility of the FVYL pocket as a druggable site. Raltitrexed's dual mechanism of action, targeting both telomerase and thymidylate synthase, underscores its potential as a versatile anticancer agent, suitable for combination therapies or standalone treatment. As the top lead, Raltitrexed demonstrates the potential of repurposed drugs in telomerase-targeted therapies, offering a time and cost-effective strategy for advancing its clinical development. The study also provides a robust framework for future drug development, addressing challenges in targeting telomerase for anticancer therapy.
Collapse
Affiliation(s)
- Divpreet Kaur
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Czechowicz P, Więch-Walów A, Sławski J, Collawn JF, Bartoszewski R. Old drugs, new challenges: reassigning drugs for cancer therapies. Cell Mol Biol Lett 2025; 30:27. [PMID: 40038587 PMCID: PMC11881393 DOI: 10.1186/s11658-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
The "War on Cancer" began with the National Cancer Act of 1971 and despite more than 50 years of effort and numerous successes, there still remains much more work to be done. The major challenge remains the complexity and intrinsic polygenicity of neoplastic diseases. Furthermore, the safety of the antitumor therapies still remains a concern given their often off-target effects. Although the amount of money invested in research and development required to introduce a novel FDA-approved drug has continuously increased, the likelihood for a new cancer drug's approval remains limited. One interesting alternative approach, however, is the idea of repurposing of old drugs, which is both faster and less costly than developing new drugs. Repurposed drugs have the potential to address the shortage of new drugs with the added benefit that the safety concerns are already established. That being said, their interactions with other new drugs in combination therapies, however, should be tested. In this review, we discuss the history of repurposed drugs, some successes and failures, as well as the multiple challenges and obstacles that need to be addressed in order to enhance repurposed drugs' potential for new cancer therapies.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Anna Więch-Walów
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland.
| |
Collapse
|
5
|
Samad MA, Zamani AI, Abdul Majid N, Karsani SA, Baharum SN, Yaacob JS, Saiman MZ. An Integrative Approach Using Molecular and Metabolomic Studies Reveals the Connection of Glutamic Acid with Telomerase and Oxidative Stress in Berberine-Treated Colorectal Cancer Cell Line HCT 116. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05200-9. [PMID: 40009339 DOI: 10.1007/s12010-025-05200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Colorectal cancer (CRC) is one of the common deadliest cancers worldwide. In Malaysia, the numbers of new CRC cases were horrific and worrisome. Telomerase is both prognostic indicator and predictor of carcinogenesis in CRC patients. Berberine, a telomerase inhibitor, was used in clinical trials and metabolomic studies; however, the association of telomerase with metabolites and metabolic pathways was not fully understood. Colorectal cancer cell line HCT 116 was cultured and treated with 10.54 µg/mL berberine. The cells were harvested at different time points to conduct subsequent analyses. The methods used in this research were real time-polymerase chain reaction (RT-PCR) to assess RNA expressions; Western blot to determine protein levels; TELOTAGGG Telomerase PCR ELISA to determine relative telomerase activity (RTA); 4',6-diamidino-2-phenylindole (DAPI) staining to determine percentage of nuclei damage; fluorescence microscopy for cell area; spectrophotometric potassium iodide assay for intracellular hydrogen peroxide concentration [H2O2]; as well as liquid chromatography mass spectrometry (LCMS) and tandem mass spectrometry (MS/MS) to investigate the intracellular metabolites. Partial least square-discriminant analysis (PLS-DA) score plot exhibited an improved separation compared to principal component analysis (PCA) when metabolomic data analysis of HCT 116 at various berberine treatment durations was conducted. Time and berberine treatment had an impact on RTA in HCT 116. RTA was discovered to be positively and negatively correlated to 14 and 2 metabolites, respectively. Glutamic acid was consistently found correlated to RTA. Other four metabolites, i.e., MG(14:0), [3-[hydroxy(phosphonooxy)phosphoryl]oxyphenyl] phosphono hydrogen phosphate), (3S,6S)-6-[[(3S,6R)-6-[(2S,3S,5S)-2,5-diiodo-4-methoxy-6-methyloxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid, and 1-[5-O-(5'-adenylyloxyphosphonyl)-beta-D-ribofuranosyl]-5-amino-1H-imidazole-4-carboxamide, were newly discovered to be connected to RTA in HCT 116. Four metabolic pathways that majorly affected shared glutamic acid and glutamine. Nitrogen metabolism, D-glutamine and D-glutamate metabolism, glyoxylate and dicarboxylate metabolism, and aminoacyl-tRNA biosynthesis have been identified to be associated with RTA. Network analyses hinted that glutamic acid was also associated with oxidative stress mechanism. The multiple roles glutamic acid acted in diverse metabolic pathways and interaction networks emphasized the importance of glutamic acid in HCT 116 regarding RTA. This research establishes the association between RTA and several chosen RNAs, proteins, metabolites, and oxidative stress mechanisms, consequential in morphological alteration in HCT 116, to expand the knowledge of the intricate biological relationships and telomerase mechanism in CRC.
Collapse
Affiliation(s)
- Muhammad Azizan Samad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- INFRA High Impact Research (HIR), HIR Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Arief Izzairy Zamani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Dey R, Shaw S, Yadav R, Patel BD, Bhatt HG, Natesan G, Jha AB, Chaube U. Morpholine-Substituted Tetrahydroquinoline Derivatives as Potential mTOR Inhibitors: Synthesis, Computational Insights, and Cellular Analysis. Cancers (Basel) 2025; 17:759. [PMID: 40075606 PMCID: PMC11898650 DOI: 10.3390/cancers17050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Backgrounds: This study explores the design of substituted tetrahydroquinoline (THQ) derivatives and their synthesis as possible inhibitors of mTOR inhibitors for targeted cancer therapy. Methods: Inspired by the structural characteristics of known mTOR inhibitors, eight novel derivatives were synthesized, characterized using mass spectroscopy, 1H, and 13C NMR, and evaluated for anticancer activity. Results: Computational studies, including molecular docking and molecular dynamics (MD) simulations, highlighted the derivative's strong binding interaction and stability within the mTOR active site. Assays for in vitro cytotoxicity showed strong and specific anticancer action against cell lines of triple-negative breast cancer, lung cancer, and breast cancer while causing negligible impact on healthy cells. Conclusions: Compound 10e emerged as the most promising candidate, displaying exceptional activity against A549 cells (IC50 = 0.033 µM) and inducing apoptosis in a dose-dependent manner, surpassing standard agents, like Everolimus and 5-flurouracil. Structure-activity relationship analysis revealed that incorporating trifluoromethyl and morpholine moieties significantly enhanced selectivity and potency. MD simulations further validated these findings, confirming stable protein-ligand interactions and favorable dynamics over a 100-ns simulation period. Collectively, this study underscores the therapeutic potential of THQ derivatives, particularly compound 10e, as promising mTOR inhibitors with potential applications in lung cancer treatment.
Collapse
Affiliation(s)
- Rajdeep Dey
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (R.D.); (S.S.); (B.D.P.); (H.G.B.); (G.N.)
| | - Suman Shaw
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (R.D.); (S.S.); (B.D.P.); (H.G.B.); (G.N.)
| | - Ruchi Yadav
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (R.D.); (S.S.); (B.D.P.); (H.G.B.); (G.N.)
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (R.D.); (S.S.); (B.D.P.); (H.G.B.); (G.N.)
| | - Gopal Natesan
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (R.D.); (S.S.); (B.D.P.); (H.G.B.); (G.N.)
| | - Abhishek B. Jha
- Department of Internal Medicine, Roy J.and Lucille A. Carver College of Medicine, University of IOWA, Iowa City, IA 52242, USA
| | - Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (R.D.); (S.S.); (B.D.P.); (H.G.B.); (G.N.)
| |
Collapse
|
7
|
Marques DSC, da Silva Lima L, de Oliveira Moraes Miranda JF, Dos Anjos Santos CÁ, da Cruz Filho IJ, de Lima MDCA. Exploring the therapeutic potential of acridines: Synthesis, structure, and biological applications. Bioorg Chem 2025; 155:108096. [PMID: 39756205 DOI: 10.1016/j.bioorg.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
The objective of this review was to explore the trends and chemical characteristics of acridines and their derivatives, analyze their contribution to the scientific literature and international cooperation, identify the most influential authors and articles, and provide an overview of the knowledge produced in elucidating their mechanisms of action. To this end, a bibliometric analysis was performed using RStudio software, along with a systematic review focusing on articles indexed in the "Web of Science" and "Scopus" databases. The keywords used were "acridine$", "Synthesi$", "Structure$", and "Biologic* Application$" for the period from 2020 to 2024. Relevant articles were carefully selected from these databases, and a bibliometric analysis was carried out to comprehensively discuss the most relevant biological activities associated with acridines. The results showed that, during the analyzed period, China and India led in the number of publications, followed by Brazil in third place. However, a decline in the number of publications was observed in the last two years of the period. Keyword analysis revealed that antitumor activity remains the most extensively studied aspect of acridines and their derivatives.
Collapse
Affiliation(s)
- Diego Santa Clara Marques
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Lisandra da Silva Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Josué Filipe de Oliveira Moraes Miranda
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Carolina Ávila Dos Anjos Santos
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| |
Collapse
|
8
|
Cao X, Fang L, Jiang Y, Zeng T, Bai S, Li S, Liu Y, Zhong W, Lu C, Yang H. Nanoscale octopus guiding telomere entanglement: An innovative strategy for inducing apoptosis in cancer cells. Biomaterials 2025; 313:122777. [PMID: 39222545 DOI: 10.1016/j.biomaterials.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Telomere length plays a crucial role in cellular aging and the risk of diseases. Unlike normal cells, cancer cells can extend their own survival by maintaining telomere stability through telomere maintenance mechanism. Therefore, regulating the lengths of telomeres have emerged as a promising approach for anti-cancer treatment. In this study, we introduce a nanoscale octopus-like structure designed to induce physical entangling of telomere, thereby efficiently triggering telomere dysfunction. The nanoscale octopus, composed of eight-armed PEG (8-arm-PEG), are functionalized with cell penetrating peptide (TAT) to facilitate nuclear entry and are covalently bound to N-Methyl Mesoporphyrin IX (NMM) to target G-quadruplexes (G4s) present in telomeres. The multi-armed configuration of the nanoscale octopus enables targeted binding to multiple G4s, physically disrupting and entangling numerous telomeres, thereby triggering telomere dysfunction. Both in vitro and in vivo experiments indicate that the nanoscale octopus significantly inhibits cancer cell proliferation, induces apoptosis through telomere entanglement, and ultimately suppresses tumor growth. This research offers a novel perspective for the development of innovative anti-cancer interventions and provides potential therapeutic options for targeting telomeres.
Collapse
Affiliation(s)
- Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Liyang Fang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yifan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Wukun Zhong
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
9
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Yuan S, Xu N, Yang J, Yuan B. Emerging role of PES1 in disease: A promising therapeutic target? Gene 2025; 932:148896. [PMID: 39209183 DOI: 10.1016/j.gene.2024.148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Nuo Xu
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
11
|
Kaur D, Saluja D, Chopra M. Identification of novel inhibitors of cancer target telomerase using a dual structure-based pharmacophore approach to virtually screen libraries, molecular docking and validation by molecular dynamics simulations. J Biomol Struct Dyn 2024:1-24. [PMID: 39703994 DOI: 10.1080/07391102.2024.2443130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 12/21/2024]
Abstract
In about 85% of cancer malignancies, replicative immortality caused by increased telomerase activity makes it an attractive target for developing anticancer therapeutics. However, the lack of approved small-molecule inhibitors rooted in the structural ambiguity of telomerase has impeded drug development for decades. In this study, we have exploited the FVYL pocket in the thumb domain, which plays a key role in the enzyme's processivity. Due to the unavailability of a co-crystalized structure of BIBR1532 with the catalytic hTERT thumb domain, we utilized the molecular dynamics method to identify the precise binding site of the inhibitor. Two pharmacophore models were generated and validated for the putative (Site-I) and newly identified (Site-II) binding pockets which were screened virtually through the ChemDiv anticancer library, Otava drug-like green collection to identify novel lead compounds, and Binding database to screen out thumb domain-specific telomerase inhibitors. The top hits obtained were filtered using drug-likeliness parameters followed by redocking using a three-level screening strategy into their binding site. The structural investigation, molecular docking studies, and confirmatory molecular dynamics revealed that the exact binding site of BIBR1532 is away from the reported FVYL pocket with characteristic interactions conserved. Subsequently, the lead compounds with the highest docking scores and significant interactions in the newly discovered extended FVYL pocket were validated using 100 ns MD simulations. Additionally, cross-validated binding free energy calculations were performed using MM-PB(GB)SA methods followed by PCA and FEL characterization. The identified top lead compounds can be validated in vitro and taken forward for anticancer drug development.
Collapse
Affiliation(s)
- Divpreet Kaur
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Laboratory of Molecular Modeling and Anticancer Drug Development. Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development. Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Liu X, Zhao X, Zhang J, Wang Y, Ye X. Rolling Circle Amplification Integrating with Exonuclease-III-Assisted Color Reaction for Sensitive Telomerase Activity Analysis. ACS OMEGA 2024; 9:49081-49087. [PMID: 39713626 PMCID: PMC11656203 DOI: 10.1021/acsomega.4c03839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Telomerase activation can lead to the escape from cell senescence and immortalization, playing a crucial role in the growth and proliferation of cancer cells. Therefore, the detection of telomerase activity is essential for cancer diagnosis and treatment. Herein, we develop a novel ultrasensitive and visually detectable platform. By incorporation of exonuclease-III (Exo-III), this platform achieves dual signal amplification of rolling circle amplification products. Additionally, the colorimetric analysis of 3,3',5,5'-tetramethylbiphenyl (TMB) chromogenic reaction system provides this approach with unique advantages such as simplicity, speediness, and sensitivity. The detection platform exhibits high sensitivity and specificity in actual sample testing, which aligns closely with results obtained using commercial kits. Moreover, it offers ease-of-use through visual determination by the naked eyes. This finding indicates that our proposed sensing method performs satisfactorily in detecting telomerase in real biological samples. Henceforth, we believe that this sensing platform holds great potential for clinical diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- Xiaoya Liu
- Department
of Oncology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Xianxian Zhao
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408099, China
| | - Jie Zhang
- Department
of Oncology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Yihan Wang
- Department
of Oncology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoping Ye
- Department
of Ultrasound, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
14
|
Zuo H, Ru Y, Gao X, Chen H, Yan Y, Ma X, Liu X, Wang Y. Small Molecules Blocking the Assembly of TCAB1 and Telomerase Complexes: Lead Discovery and Biological Activity. ACS Med Chem Lett 2024; 15:1205-1212. [PMID: 39140071 PMCID: PMC11318020 DOI: 10.1021/acsmedchemlett.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
The vast majority of tumor cells maintain the length of the telomeres through a telomerase-dependent maintenance mechanism, allowing for unlimited proliferation. TCAB1 is indispensable for the correct assembly of telomerase complexes and the delivery of telomerase to the telomere. Therefore, this study aimed to explore small molecules capable of interfering with the assembly of TCAB1 and the telomerase complex as novel efficient telomerase inhibitors. Through virtual screening, biological evaluation, and the confirmation of target engagement, the potential ligands of TCAB1 effectively inhibiting telomerase activity were discovered. Among them, compound 9 exhibited telomerase inhibitory activity at a two-digit nanomolar level (IC50 = 0.03 μM), which was dramatically enhanced in comparison with the previously reported telomerase inhibitors. This research, based on the blockage of telomerase assembly through disturbing TCAB1, provides a novel strategy and a potential target for telomerase inhibitor discovery.
Collapse
Affiliation(s)
- Haojie Zuo
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Yiming Ru
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Xiuxiu Gao
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Hui Chen
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Yaoyao Yan
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Xiaodong Ma
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
- Department
of Medicinal Chemistry, Anhui Academy of
Chinese Medicine, Hefei 230012, China
| | - Xinhua Liu
- School
of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Wang
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
- Department
of Medicinal Chemistry, Anhui Academy of
Chinese Medicine, Hefei 230012, China
| |
Collapse
|
15
|
Sun H, Li X, Long Q, Wang X, Zhu W, Chen E, Zhou W, Yang H, Huang C, Deng W, Chen M. TERC promotes non-small cell lung cancer progression by facilitating the nuclear localization of TERT. iScience 2024; 27:109869. [PMID: 38799568 PMCID: PMC11126826 DOI: 10.1016/j.isci.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The core of telomerase consists of the protein subunit telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC). So far, the role of TERC in cancer development has remained elusive. Here, we found TERC expression elevated in non-small cell lung cancer (NSCLC) tissues, which was associated with disease progression and poor prognosis in patients. Using NSCLC cell lines and xenograft models, we showed that knockdown of TERC caused cell cycle arrest, and inhibition of cell proliferation and migration. Mechanistically, TERC was exported to the cytoplasm by nuclear RNA export factor 1 (NXF1), where it mediated the interaction of TERT with other telomerase subunits. Depletion of TERC hindered the assembly and subsequent nuclear localization of the telomerase complex, preventing TERT from functioning in telomere maintenance and transcription regulation. Our findings suggest that TERC is a potential biomarker for NSCLC diagnosis and prognosis and can be a target for NSCLC treatment.
Collapse
Affiliation(s)
- Haohui Sun
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaodi Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Qian Long
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaonan Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wancui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Enni Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wenhao Zhou
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Han Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Chuyang Huang
- Department of Urology, Shaoyang Central Hospital, University of South China, Shaoyang, Hunan 422000, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
16
|
Shan L, Li Y, Ma Y, Yang Y, Wang J, Peng L, Wang W, Zhao F, Li W, Chen X. Hairpin DNA-Based Nanomaterials for Tumor Targeting and Synergistic Therapy. Int J Nanomedicine 2024; 19:5781-5792. [PMID: 38882546 PMCID: PMC11180469 DOI: 10.2147/ijn.s461774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Background While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the β-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.
Collapse
Affiliation(s)
- Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Yudie Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Yifan Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yang Yang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Lei Peng
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Fang Zhao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Wanrong Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
17
|
Yan X, Yang P, Li Y, Liu T, Zha Y, Wang T, Zhang J, Feng Z, Li M. New insights from bidirectional Mendelian randomization: causal relationships between telomere length and mitochondrial DNA copy number in aging biomarkers. Aging (Albany NY) 2024; 16:7387-7404. [PMID: 38663933 PMCID: PMC11087129 DOI: 10.18632/aging.205765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.
Collapse
Affiliation(s)
- Xinyu Yan
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Peixuan Yang
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yani Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Liu
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Yawen Zha
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Wang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Jingjing Zhang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Feng
- Department of Radiation Oncology, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, China
| | - Minying Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
18
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
19
|
Zhang H, Zeng C, Zhu Q, Zhu D, Yu B. Synthesis of the Reducing-end Hexasaccharide Fragment of Marine Lipopolysaccharide Axinelloside A. Chemistry 2024; 30:e202304180. [PMID: 38180294 DOI: 10.1002/chem.202304180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
Chemical synthesis of an orthogonally protected hexasaccharide relevant to the reducing-end half of axinelloside A, a highly sulfated marine lipopolysaccharide, is disclosed. The synthesis features preparation of the scyllo-inositol unit via a Ferrier-type-II rearrangement, construction of the 1,2-cis-glycosidic bonds via remote participation, and concise [2+2+2] assembly via Au(I)-catalyzed glycosylation.
Collapse
Affiliation(s)
- Haoliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Changgen Zeng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qian Zhu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dapeng Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
20
|
Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS. Berberine and RNAi-Targeting Telomerase Reverse Transcriptase (TERT) and/or Telomerase RNA Component (TERC) Caused Oxidation in Colorectal Cancer Cell Line, HCT 116: An Integrative Approach using Molecular and Metabolomic Studies. Cell Biochem Biophys 2024; 82:153-173. [PMID: 38198024 DOI: 10.1007/s12013-023-01210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Colorectal cancer (CRC) is the most common cancer in both men and women and is associated with increased telomerase levels and activity. The potential downstream effects of TERT and/or TERC downregulation by berberine (a telomerase inhibitor) or RNA interference (RNAi) on various target RNAs, proteins, relative telomerase activity (RTA), relative telomere length (RTL), hydrogen peroxide concentration [H2O2], percentage of cell cycle distribution, cell size and granularity as well as cellular metabolites were explored in HCT 116 cell line. Knockdown of TERT decreased TERC. The downregulation of TERT and/or TERC caused increment of [H2O2], G0/G1 phase arrest in addition to decreased S and G2/M phases, as well as diminished cell size. RTL was later reduced as a result of TERT, TERT and/or TERC downregulation which decreased RTA. It was discovered that xanthine oxidase (XO) was significantly and positively correlated at FDR-adjusted p value < 0.05 with RTA, TERT, TERT, TERC, and RTL. HCT 116 with decreased RTA was closely clustered in the Principal Component Analysis (PCA) indicating similarity of the metabolic profile. A total of 55 metabolites were putatively annotated in this study, potentially associated with RTA levels. The Debiased Sparse Partial Correlation (DSPC) Network revealed that RTA was directly correlated to TERT. There were 4 metabolic pathways significantly affected by low level of RTA which include (1) purine metabolism, (2) glycine, serine, and threonine metabolism, (3) glyoxylate and dicarboxylate metabolism, and (4) aminoacyl-tRNA biosynthesis. The Gene-Metabolite Interaction Network implied that reduced RTA level was related to the mechanism of oxidative stress. This study reveals the linkages between RTA to various selected RNAs, proteins, metabolites, oxidative stress mechanism and subsequently phenotypic changes in HCT 116 which is valuable to understand the intricate biological interactions and mechanism of telomerase in CRC.
Collapse
Affiliation(s)
- Muhammad Azizan Samad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- INFRA High Impact Research (HIR), HIR Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Xu M, Bai Z, Xie B, Peng R, Du Z, Liu Y, Zhang G, Yan S, Xiao X, Qin S. Marine-Derived Bisindoles for Potent Selective Cancer Drug Discovery and Development. Molecules 2024; 29:933. [PMID: 38474445 PMCID: PMC10935119 DOI: 10.3390/molecules29050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Marine-derived bisindoles exhibit structural diversity and exert anti-cancer influence through multiple mechanisms. Comprehensive research has shown that the development success rate of drugs derived from marine natural products is four times higher than that of other natural derivatives. Currently, there are 20 marine-derived drugs used in clinical practice, with 11 of them demonstrating anti-tumor effects. This article provides a thorough review of recent advancements in anti-tumor exploration involving 167 natural marine bisindole products and their derivatives. Not only has enzastaurin entered clinical practice, but there is also a successfully marketed marine-derived bisindole compound called midostaurin that is used for the treatment of acute myeloid leukemia. In summary, investigations into the biological activity and clinical progress of marine-derived bisindoles have revealed their remarkable selectivity, minimal toxicity, and efficacy against various cancer cells. Consequently, they exhibit immense potential in the field of anti-tumor drug development, especially in the field of anti-tumor drug resistance. In the future, these compounds may serve as promising leads in the discovery and development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China;
| | - Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China;
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Guangshuai Zhang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Si Yan
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| |
Collapse
|
22
|
ZHANG LINGLI, LI YAN, MAO JINGXIN. Research progress on natural products against hepatocellular carcinoma. BIOCELL 2024; 48:905-922. [DOI: 10.32604/biocell.2024.050396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 11/26/2024]
|
23
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
24
|
Lin J, Zhang J, Ma Z, Wu X, Wang F, Zhao Y, Wu K, Liu Y. Reaction of human telomeric unit TTAGGG and a photoactivatable Pt(IV) anticancer prodrug. Dalton Trans 2023; 52:12057-12066. [PMID: 37581306 DOI: 10.1039/d3dt01643a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The interaction of a photoactivatable diazidodihydroxido Pt(IV) prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1), with a hexamer straight human telomeric DNA unit sequence (5'-T1T2A3G4G5G6-3', I) upon light irradiation was investigated by electrospray ionization mass spectroscopy (ESI-MS). In the primary mass spectrum, two major mono-platinated I adducts with the bound Pt moieties, trans-[PtII(N3)(py)2]+ (1') and trans-[PtII(py)2]2+ (1''), respectively, were detected. It is rare to observe such high abundance and nearly equal intensity platinated DNA adducts formed by these two PtII species because 1' is usually the only major reduced Pt(II) species produced by the photodecomposition of complex 1 in the presence of DNA while 1'' was rarely detected as the major reduced PtII species reported previously. Subsequent tandem mass spectrometric analysis by collision-induced dissociation (CID) showed that in the former adduct {I + 1'}2+, G6 and A3 were the platination sites. While in the latter adduct {I + 1''}2+, a potential intrastrand crosslink was speculated after G4 and G6 sites were identified. Additionally, other minor platinated adducts like di-platinated I adduct by 1' with platination sites at G4 and G6 and mono-platinated I adducts containing base oxidation were also detected by mass spectrometry. Due to the rich guanines and their sensitivity to oxidation, the oxidation induced by 1 most probably occurred at guanine. The oxidation adducts were proposed as 8-hydroxyl guanine, spiroiminodihydantoin (Sp), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 5-guanidinohydantoin (Gh), and/or dehydroguanidinohydantoin (DGh) referring to previous reports. The obtained results provide useful chemical information about the photoreaction between photoactivatable Pt(IV) anticancer prodrugs and human telomeric DNA. Such special damages of Pt(IV) prodrugs on human telomeric DNA implicate its active role in the mechanism of Pt(IV) prodrugs and further support the unique sequence-dependent photointeraction profile of complex 1 reacting with DNA.
Collapse
Affiliation(s)
- Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yi Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|