1
|
Ma R, Fu R, Wang Y, Njobvu KM, Fan Y, Yang Z, Chen M, Liu F, Jiang Z, Rao Y, Huang L, Xu C, Chen J, Liu J. Discovery of novel rigid STING PROTAC degraders as potential therapeutics for acute kidney injury. Eur J Med Chem 2025; 290:117539. [PMID: 40138992 DOI: 10.1016/j.ejmech.2025.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Acute kidney injury (AKI) is a critical condition resulting from intrinsic immune overactivation for which no ideal therapeutic agent is available. The development of therapeutic drugs with new targets and mechanism has become one of the important challenges in the pharmaceutical field. The interferon gene stimulating protein (STING) directly regulates the intrinsic immune processes and is a potential target for AKI therapy. Herein, we designed synthesized and evaluated a series of novel STING-PROTAC degraders via a rigid strategy. Among them, compound ST9 performed the highest degradation capacity with a DC50 of 0.62 μM in THP-1 cells. In a cisplatin-induced HK-2 cell model, ST9 could down-regulate the STING/NF-κB signaling axis and thus inhibit the expression of inflammatory factors. Additionally, ST9 showed a significantly improved metabolic stability profile. Furthermore, ST9 displayed favorable in vivo anti-AKI efficacy and has no toxic side effects on other organs. These results suggest that the novel rigid STING-PROTAC ST9 has clinical potential as a renoprotective agent for the treatment/prevention of acute kidney injury.
Collapse
Affiliation(s)
- Rongxiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Renquan Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yifan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Kabonde Makasa Njobvu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yapeng Fan
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Mingbing Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Feifei Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Zhongping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Congjun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Xue L, Liu R, Qiu T, Zhuang H, Li H, Zhang L, Yin R, Jiang T. Design, synthesis, and activity evaluation of novel STING inhibitors based on C170 and H151. Eur J Med Chem 2025; 290:117533. [PMID: 40157312 DOI: 10.1016/j.ejmech.2025.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Stimulating the STING signaling pathway for immune system activation is considered a promising strategy for cancer treatment. However, activating the STING pathway can lead to adverse effects, as aberrant activation or specific mutations in STING may result in autoimmune and inflammatory diseases. Therefore, the development of STING inhibitors is equally important. In this study, we first introduced hydroxyl groups into the STING inhibitors C170 and H151, creating functional sites for further modification. Then the introduction of various substituents resulted in the identification of more potent inhibitors, Y2 and HY2, which effectively suppressed the activation of the STING pathway in THP1 and RAW264.7 cells. Compounds Y2 and HY2 demonstrated potent anti-inflammatory effects in mice cisplatin-induced acute kidney injury models by inhibiting the STING pathway. Collectively, Y2 and HY2 warrant further investigation as novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Liang Xue
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruixue Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Tingting Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Huiying Zhuang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Hongwei Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lican Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Center for Innovative Drug Discovery, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, 511455, China.
| |
Collapse
|
3
|
Chen X, Zhuo SH, Li YM. Oligomerization of STING and Chemical Regulatory Strategies. Chembiochem 2025; 26:e202400888. [PMID: 39900536 DOI: 10.1002/cbic.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in innate immunity. Upon the recognition of cytosolic dsDNA, STING undergoes several structural changes, with oligomerization playing a key role in initiating a cascade of immune responses. Therefore, controlling the STING pathway by manipulating STING oligomerization is a practical strategy. This review focuses on the detailed mechanism of STING oligomerization, highlighting its decisive role. It also describes oligomerization-based strategies to regulate STING protein, such as the use of small-molecule agonists and biomacromolecules, highlighting their interaction modes and potential therapeutic applications. This knowledge may lead to the development of innovative approaches for treating cancer and immune disorders.
Collapse
Affiliation(s)
- Xi Chen
- Zhili College, Tsinghua University, Beijing, 100084, P. R. China
| | - Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Fan Y, Zeng Z, Mo J, Wang Z, Jiang H, Liu J, Qian H, Shi W. Design, Synthesis, and Biological Assessment of Novel Aminobenzidazole Agonists Targeting the Stimulator of Interferon Genes (STING) Receptor Signaling Pathway for Oncology Immunotherapy. ChemMedChem 2025; 20:e202400695. [PMID: 39714832 DOI: 10.1002/cmdc.202400695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The activation of the STING-mediated signaling pathway leads to the secretion of type I interferon (IFN) and the activation of tumor-specific T cells. STING, a pattern recognition receptor located on the endoplasmic reticulum membrane of immune cells, binds with endogenous cyclic dinucleotides. STING undergoes phosphorylation, triggering the STING-TBK1-IRF3 pathway and NF-κB pathway, resulting in the release of IFN-β and other pro-inflammatory cytokines, ultimately enhancing the activation of tumor-specific T cells. This mechanism serves to complement the limitations of immune checkpoint inhibitors and enhances the efficiency of the immune response. This study selected benzimidazole compounds GSK and SR-717, which exhibit promising potential as patented medicines, as our lead compounds. Aiming to address the challenges associated with the short half-life of benzimidazole compounds and the limited molecular activity of SR-717, we designed and synthesized a series of STING agonists (compounds 6~29). The compound 17 showed excellent agonistic activity on hSTING protein in vitro. The cytotoxicity tests of all the synthesized compounds were performed in vitro. Performed in vivo pharmacokinetic studies on the most promising compounds and conducted molecular docking analyses.
Collapse
Affiliation(s)
- Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zeqi Zeng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiaxian Mo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zike Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Hongyu Jiang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Juanjuan Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| |
Collapse
|
5
|
Xue L, Liu R, Zhang L, Qiu T, Liu L, Yin R, Jiang T. Discovery of novel nitrofuran PROTAC-like compounds as dual inhibitors and degraders targeting STING. Eur J Med Chem 2024; 279:116883. [PMID: 39303513 DOI: 10.1016/j.ejmech.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Aberrant activation of the innate immune molecule STING can initiate inflammation and autoimmune diseases. Small molecule inhibitors targeting STING have demonstrated therapeutic efficacy against these conditions. Moreover, employing degradants to target STING represents a novel approach to drug design strategy. Consequently, we have designed and synthesized a series of covalent degradants targeting STING. Among them, compound P8 exhibited the highest degradation capacity, with a 24-h DC50 of 2.58 μM in THP-1 cells. In THP-1 cells, P8 specifically degraded STING proteins through the lysosomal pathway, acting as dual a degrader and inhibitor to manifest anti-inflammatory effects. Conversely, in RAW264.7 cells, P8 solely acted as an inhibitor without exhibiting degradative capacity towards the STING protein level. Additionally, P8 displayed renal-protective properties in a cisplatin-induced acute kidney injury model. These results highlight the significant potential of further investigating compound P8.
Collapse
Affiliation(s)
- Liang Xue
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruixue Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lican Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Tingting Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lu Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Center for Innovative Drug Discovery, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, 511455, China.
| |
Collapse
|
6
|
Zhuo SH, Wang TY, Zhao L, Su JY, Hu JJ, Zhao YF, Li YM. piSTING: A Pocket-Independent Agonist Based on Multivalency-Driven STING Oligomerization. Angew Chem Int Ed Engl 2024; 63:e202407037. [PMID: 38767062 DOI: 10.1002/anie.202407037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The stimulator of interferon genes (STING) pathway is a potent therapeutic target for innate immunity. Despite the efforts to develop pocket-dependent small-molecule STING agonists that mimic the endogenous STING ligand, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), most of these agonists showed disappointing results in clinical trials owing to the limitations of the STING pocket. In this study, we developed novel pocket-independent STING-activating agonists (piSTINGs), which act through multivalency-driven oligomerization to activate STING. Additionally, a piSTING-adjuvanted vaccine elicited a significant antibody response and inhibited tumour growth in therapeutic models. Moreover, a piSTING-based vaccine combination with aPD-1 showed remarkable potential to enhance the effectiveness of immune checkpoint blockade (ICB) immunotherapy. In particular, piSTING can strengthen the impact of STING pathway in immunotherapy and accelerate the clinical translation of STING agonists.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tian-Yang Wang
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lang Zhao
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing-Yun Su
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Jian Hu
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315221, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100069, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
8
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|