1
|
Chen C, Hao Z, Chen J, Li S, Su Y, Jiang S, Ma L, Lv H, Pei X, Zhang P, Wang H, Yang G. Design, synthesis, and biological evaluation of C-12 modified ocotillol-type derivatives as novel P-glycoprotein modulators for overcoming multidrug resistance. Eur J Med Chem 2025; 294:117757. [PMID: 40382839 DOI: 10.1016/j.ejmech.2025.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Ocotillol-type ginsenoside derivatives exhibit significant potential as modulators of P-glycoprotein (Pgp). To date, structural investigations of Ocotillol-type saponins have predominantly focused on modifications at the C-3 position of the A-ring, with limited exploration of the C-12 position on the C-ring. In this study, we designed and synthesized a series of C-12 modified ocotillol-type derivatives and assessed their efficacy in reversing multidrug resistance (MDR) in KBV cells. Most of the newly synthesized derivatives exhibited minimal cytotoxicity and potent MDR reversal capabilities. Notably, compound 9e emerged as the most effective agent in reversing tumor MDR in vitro, showing more than twice the potency of verapamil. Furthermore, 9e displayed high selectivity for Pgp, being 40- and 20-fold more effective than verapamil in inhibiting Rh123 efflux and enhancing doxorubicin sensitivity, respectively. Molecular docking analysis revealed that 9e possesses a unique T-shaped configuration that occupies the access channel of Pgp, obstructing the peristaltic extrusion mechanism of TM12 and TM9, thereby inhibiting the efflux function of Pgp. Overall, 9e represents a promising lead compound for the development of novel Pgp modulators to overcome MDR in cancer therapy.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ziqian Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jiaxuan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yongyuan Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Suwei Jiang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Lin Ma
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanqi Lv
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xinjie Pei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Zhao S, Xu Z. Development of indole hybrids for potential lung cancer treatment-part I: nitrogen-containing six-membered aromatic heterocycles. Future Med Chem 2025; 17:839-855. [PMID: 40156457 PMCID: PMC12026046 DOI: 10.1080/17568919.2025.2485675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Lung cancer is the most prevalent invasive malignancy and the leading cause of cancer-related death. Chemotherapy is vital for lung cancer therapy, but multidrug resistance is responsible for the majority of lung cancer fatalities, creating an imperative demand to develop novel chemotherapeutics. Indole is a valuable anti-lung cancer pharmacophore since its derivatives could act on lung cancer cells through various mechanisms. Notably, indole hybrids could inhibit multiple targets simultaneously and have the potential to overcome the shortcomings of traditional chemotherapeutics. Moreover, many indole hybrids such as the indole-pyrimidine hybrid osimertinib and the indole-hydroxamic acid hybrid panobinostat, are either under clinical evaluations or have already been approved for lung cancer therapy. This indicates that the rational design of indole hybrids represents a highly prospective approach for the development of new anti-lung cancer chemotherapeutic agents. This review focuses on exploring the anti-lung cancer therapeutic potential of indole hybrids and delves into their action mechanisms as well as structure-activity correlations, covering articles published between 2021 and present. The ultimate goal is to offer a foundation for the rational design of indole hybrids in the future.
Collapse
Affiliation(s)
- Shijia Zhao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, China
| | - Zhi Xu
- Chengdu Dexinchen Technology Co. Ltd., Chengdu, Sichuan, China
| |
Collapse
|
3
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2025; 42:257-297. [PMID: 39911015 DOI: 10.1039/d4np00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Covering: January to the end of December 2023This review covers the literature published in 2023 for marine natural products (MNPs), with 582 citations (541 for the period January to December 2023) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1220 in 340 papers for 2023), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the progress in the study of prokaryote involvement in macro-invertebrate MNP production is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Zheng B, Wang YX, Wu ZY, Li XW, Qin LQ, Chen NY, Su GF, Su JC, Pan CX. Design, Synthesis and Bioactive Evaluation of Topo I/ c-MYC Dual Inhibitors to Inhibit Oral Cancer via Regulating the PI3K/AKT/NF-κB Signaling Pathway. Molecules 2025; 30:894. [PMID: 40005202 PMCID: PMC11858653 DOI: 10.3390/molecules30040894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The significantly rising incidence of oral cancer worldwide urgently requires the identification of novel, effective molecular targets to inhibit the progression of malignancy. DNA topoisomerase I (Topo I) is a well-established target for cancer treatment, and many studies have shown that different cancer cell genes could be targeted more selectively with one type of Topo I inhibitor. In this report, a new scaffold pyridothieno[3,2-c]isoquinoline 11,11-dioxide was designed via the combination of the key fragment or bioisoster of Topo I inhibitor azaindenoisoquinolines and G-quadruplex binder quindoline. Thirty-two target derivatives were synthesized, among which compounds 7be, with potent Topo I inhibition, exhibited effective antiproliferative activity against Cal27, one of the oral cancer cell lines highly expressing Topo I protein. Further studies indicated that 7be could also inhibit the activation of PI3K/AKT/NF-κB pathway and downregulate the level of c-MYC, repress the colony formation and the migration of Cal27 cells and trigger apoptosis and autophagy. Molecular docking indicated that 7be could interact with the complex of Topo I and DNA via a mode similar to the indenoisoquinolines. The results of the Cal27 xenograft model confirmed that 7be exhibited promising anticancer efficacy in vivo, with tumor growth inhibition (TGI) of 64.7% at 20 mg/kg.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; (B.Z.); (Y.-X.W.); (Z.-Y.W.); (X.-W.L.); (L.-Q.Q.); (N.-Y.C.); (G.-F.S.); (J.-C.S.)
| |
Collapse
|
5
|
Liu Z, Wang Q, Chi Y, Chen R, Zhao L, Liu Z, Zhai J, Li S, Han N, Yin J. Acovenosigenin A β-glucoside mediates JAK2-STAT3 signaling pathway by targeting GP130 in A549 and H460 cells based on integrative analysis of transcriptome and proteome and biological verification. Bioorg Chem 2024; 151:107633. [PMID: 39003941 DOI: 10.1016/j.bioorg.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Acovenosigenin A β-glucoside (AAG) is a cardiac glycoside derived from Streptocaulon juventas (Lour.) Merr, which exhibited the potential in treating lung cancer in our previous research. However, the action mechanism remains unclear. In this research, JAK2-STAT3 signaling pathway was predicted to be the critical regulation pathway based on the integrative analysis of transcriptome and proteome. Western blotting and qPCR assays were performed to identify that AAG can regulate JAK2-STAT3 signaling pathway and its downstream genes, such as c-Myc, Survivin, Cyclin B1, CDK1, Bcl-2. And this action of AAG depended on the suppression of STAT3 phosphorylation and its nuclear translocation through the experiments of Immunofluorescence, transient transfection and cryptotanshinone treatment. Additionally, AAG was discovered to mediate the JAK2-STAT3 pathway in IL-6-driven A549 and H460 cells, which in turn inhibited cell proliferation, promoted mitochondria-related apoptosis, and arrested the cell cycle progression. By molecular docking analysis, CETSA and SIP experiments, the protein of GP130 was identified as the specific target of AAG in A549 and H460 cells. Further studies suggested that AAG inhibited JAK2-STAT3 pathway and its downstream genes by targeting GP130 in nude mice xenograft model in vivo. This research presented that AAG exhibits the promising potential in the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhe Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qilong Wang
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Chi
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Chen
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lichun Zhao
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianxiu Zhai
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sikai Li
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Yu L, Ren R, Li S, Zhang C, Chen C, Lv H, Zou Z, Pei X, Song Z, Zhang P, Wang H, Yang G. Novel pyxinol amide derivatives bearing an aliphatic heterocycle as P-glycoprotein modulators for overcoming multidrug resistance. Eur J Med Chem 2024; 272:116466. [PMID: 38704938 DOI: 10.1016/j.ejmech.2024.116466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.
Collapse
Affiliation(s)
- Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruiyin Ren
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Cheng Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanqi Lv
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zongji Zou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xinjie Pei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
7
|
Tan S, Zou Z, Luan X, Chen C, Li S, Zhang Z, Quan M, Li X, Zhu W, Yang G. Synthesis, Anti-Inflammatory Activities, and Molecular Docking Study of Novel Pyxinol Derivatives as Inhibitors of NF-κB Activation. Molecules 2024; 29:1711. [PMID: 38675532 PMCID: PMC11052049 DOI: 10.3390/molecules29081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| |
Collapse
|