1
|
Chen S, Zhang X, Mo H, Peng Y, An Z, Wu J, Wei X, Zhang S, Xiong Y, Jiang W, Peng X, Zhuo L, Lei Z, Wang Z, Hu Z. Structure-activity relationship study of novel evodiamine amino acid conjugates with potent anti-colorectal cancer efficacy. Eur J Med Chem 2025; 283:117132. [PMID: 39647421 DOI: 10.1016/j.ejmech.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Evodiamine has been a promising lead structure with broad-spectrum antitumor activity. Druggability optimization is the most challenging part of evodiamine-based lead-to-candidate campaign. Amino acids as building blocks for conjugates are widely incorporated into approved drug and drug candidates, demonstrating highly attractive druggability. Herein, a series of evodiamine amino acid conjugates were designed and synthesized based on the evodiamine lead compound (±)-8b discovered in our previous work. The structure-activity relationship (SAR) studies culminated in the identification of a promising conjugate (-)-15h featuring a N-Boc-l-glutamine group and a chiral carbon atom (sinister), which exhibited nanomolar antiproliferative activity against LoVo and RKO colorectal cancer cells. Moreover, (-)-15h could inhibit topoisomerases I, arrest the cell cycle in the G2/M phase, and induce apoptosis. Importantly, (-)-15h (tumor growth inhibition rate was 82.53 % in 40 mpk) showed better efficacy and tolerability to that of parent compound (-)-8b (tumor growth inhibition rate was 51.22 % in 40 mpk) in LoVo xenograft model. Further, (-)-15h (tumor growth inhibition rate was 70.09 % in 40 mpk) showed comparable efficacy and better tolerability to that of topotecan (tumor growth inhibition rate was 70.67 % in 0.5 mpk) in HT-29 xenograft model. Collectively, this study further provided a strong scientific basis for amino acid-based structural modifications and a drug lead for anti-colorectal cancer applications.
Collapse
Affiliation(s)
- Shuting Chen
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hanxuan Mo
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhigang An
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Xiuzhen Wei
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Siyi Zhang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yongxia Xiong
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhengwen Lei
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Zecheng Hu
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Zhao X, Cheng X, Liu Z, Chen W, Hao W, Ma S, Zhang J, Huang W, Yao D. Design, synthesis and biological evaluation of plant-derived miliusol derivatives achieve TNBC profound regression in vivo. Eur J Med Chem 2024; 279:116882. [PMID: 39305634 DOI: 10.1016/j.ejmech.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024]
Abstract
Triple-negative breast cancer has become a major problem in clinical treatment due to its high heterogeneity, and Plant-derived drug discovery has been the focus of attention for novel anti-tumor therapeutics. In this study, Miliusol, a natural product isolated from the rarely reported plant Miliusa tenuistipitata, was identified as the lead compound, and 25 miliusol derivatives were designed and synthesized under antiproliferative activity guidance. The results revealed that ZMF-24 was demonstrated to have potent anti-TNBC proliferation with IC50 values of 0.22 μM and 0.44 μM in BT-549 cells and MDA-MB-231 cells respectively with low cytotoxicity to MCF10A cells, and could significantly downregulate proliferation and migration markers. Through RNAseq analysis, molecular docking and CETSA experiment, we found that ZMF-24 could inhibit Eukaryotic translation initiation factor 3 subunit D (EIF3D) that further disrupted the energy supply of TNBC by inhibiting glycolysis, induced profound TNBC apoptosis by stimulating persistent ER stress. Importantly, ZMF-24 exhibited remarkable anti-proliferation and anti-metastasis potential in nude mice xenograft TNBC model without obvious toxicity. Collectively, the findings demonstrate ZMF-24 has significant potential as a potent chemotherapy agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaoling Cheng
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhiying Liu
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Weiji Chen
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Wenli Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Shuangshuang Ma
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dahong Yao
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Lin L, Liu Y, Tang R, Ding S, Lin H, Li H. Evodiamine: A Extremely Potential Drug Development Candidate of Alkaloids from Evodia rutaecarpa. Int J Nanomedicine 2024; 19:9843-9870. [PMID: 39345907 PMCID: PMC11430234 DOI: 10.2147/ijn.s459510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024] Open
Abstract
Evodiamine (EVO) is a tryptamine indole alkaloid and the main active ingredient in Evodia rutaecarpa. In recent years, the antitumor, cardioprotective, anti-inflammatory, and anti-Alzheimer's disease effects of EVO have been reported. EVO exerts antitumor effects by inhibiting tumor cell activity and proliferation, blocking the cell cycle, promoting apoptosis and autophagy, and inhibiting the formation of the tumor microvasculature. However, EVO has poor solubility and low bioavailability. Several derivatives with high antitumor activity have been discovered through the structural optimization of EVO, and new drug delivery systems have been developed to improve the solubility and bioavailability of EVO. Current research found that EVO could have toxic effects, such as hepatotoxicity, nephrotoxicity, and cardiac toxicity. This article reviews the pharmacological activity, derivatives, drug delivery systems, toxicity, and pharmacokinetics of EVO and provides research ideas and references for its further in-depth development and clinical applications.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yuling Liu
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruying Tang
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Shilan Ding
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- National Medical Products Administration Key Laboratory for Research Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Li
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People's Republic of China
| |
Collapse
|
4
|
Yong X, Wang B, Wang M, Lyu H, Yin M, Jin T, Feng X, Shan Y, Liang Y, Wang Q. Comprehensive Analysis of 11 Species of Euodia (Rutaceae) by Untargeted LC-IT-TOF/MS Metabolomics and In Vitro Functional Methods. Molecules 2024; 29:1059. [PMID: 38474571 DOI: 10.3390/molecules29051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.
Collapse
Affiliation(s)
- Xuhong Yong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mengdi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tong Jin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qizhi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Ling J, Li X, Wang M, Zhang C, Liu Y, Zhang X, Liu C, Ren Q, Zeng Y, Wang C, Chen Y, Sun C, Chen H, Zuo Y, Cao X, Deng Y, Ren B, Li D, Lu J. Novel sulfonyl-substituted tetrandrine derivatives for colon cancer treatment by inducing mitochondrial apoptosis and inhibiting PI3K/AKT/mTOR pathway. Bioorg Chem 2024; 143:107069. [PMID: 38160477 DOI: 10.1016/j.bioorg.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Tetrandrine (TET) possesses multiple pharmacological activities and could suppress tumor proliferation via PI3K pathway inhibition. However, inferior antitumor activity and potential toxicity limit its clinical application. In the present study, a series of 14-sulfonamide and sulfonate TET derivatives were designed, synthesized, and evaluated for biological activities. Through structural-activity relationship studies, compound 3c with α, β-unsaturated carbonyl group exhibited the most potent activity against all tested tumor cell lines (including Hela, HCT116, HepG2, MCF-7, and SHSY5Y), as well as negligible toxicity against normal cell lines LO2 and HEK293. Additionally, compound 3c effectively inhibited HCT116 and CT26 cell proliferation in vitro with increased cell proportion in the G2/M phase, activated the mitochondrial apoptosis pathway, and induced colon cancer cell apoptosis by suppressing the PI3K/AKT/mTOR pathway. The further molecular docking results confirmed that compound 3c is potentially bound to multiple residues in PI3K with a stronger binding affinity than TET. Ultimately, compound 3c dramatically suppressed tumor growth in the CT26 xenograft tumor model, without noticeable visceral toxicity detected in the high-dose group. In summary, compound 3c might present new insights for designing new PI3K inhibitors and be a potential candidate for colon cancer treatment.
Collapse
Affiliation(s)
- Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Podolak M, Holota S, Deyak Y, Dziduch K, Dudchak R, Wujec M, Bielawski K, Lesyk R, Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg Chem 2024; 143:107076. [PMID: 38163424 DOI: 10.1016/j.bioorg.2023.107076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Collapse
Affiliation(s)
- Magdalena Podolak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yaroslava Deyak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; Department of Pharmaceutical Disciplines, Uzhhorod National University, Narodna Square 3, 88000 Uzhhorod, Ukraine
| | - Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Rostyslav Dudchak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
7
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|