1
|
Ragab SS. Signature of click chemistry in advanced techniques for cancer therapeutics. RSC Adv 2025; 15:10583-10601. [PMID: 40190630 PMCID: PMC11970365 DOI: 10.1039/d5ra01196e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Click chemistry has made a revolution in the field of chemical biology owing to its high efficiency, specificity, and mild reaction conditions. The copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted [3 + 2] azide-alkyne cycloaddition (SPAAC) stand out as the most popular click reactions that construct a stable triazole ring by reacting an azide with an alkyne. These two reactions represent an ideal choice for biological applications due to its specificity, reliability, and biocompatibility. As a powerful modular synthetic approach for creating new molecular entities, it has seen increasing use in anticancer drug discovery. The present "state of the art" focuses mainly on the signature of click chemistry (CuAAC and SPAAC) in advanced techniques for cancer therapeutics, which includes cancer immunotherapy, antibody-drug conjugates, development of proteolysis-targeting chimeras, targeted dual-agent combination therapy for cancer, exosome modification for cancer therapy, and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Sherif Shaban Ragab
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre El-Buhouth St, P.O. 12622, Dokki Giza Egypt
| |
Collapse
|
2
|
Xie S, Zhu J, Peng Y, Zhan F, Zhan F, He C, Feng D, Xie J, Liu J, Zhu H, Yao H, Xu J, Su Z, Xu S. In Vivo Self-Assembly of PROTACs by Bioorthogonal Chemistry for Precision Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202421713. [PMID: 39714400 DOI: 10.1002/anie.202421713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) hold immense promise for targeted protein degradation; however, challenges such as off-target effects, poor drug-likeness properties, and the "hook effect" remain. This study introduces Nano-Click-formed PROTACs (Nano-CLIPTACs) for precise tumor protein degradation in vivo. Traditional PROTACs with high molecular weight were first divided into two smaller druglike precursors capable of self-assembling to form functional PROTACs through a bioorthogonal reaction. Then, optimal CLIPTACs precursors (W4 and Z2) were encapsulated individually into cyclic RGDfC-peptide-modified liposomes to prepare Nano-CLIPTACs, enabling tumor-targeted delivery and subsequent in situ self-assembly to form PROTACs WZ42 within tumor cells. The degradation abilities of Nano-CLIPTACs in vitro and in vivo were further verified using a key oncology target, anaplastic lymphoma kinase (ALK), validating the safety, efficacy and "anti-hook effect" of this strategy. Overall, Nano-CLIPTACs represent a critical step towards the clinical translation of PROTACs technology for precise targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Shaowen Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jingjie Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yihan Peng
- Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Fangyi Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Feiyan Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Chen He
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Dazhi Feng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jingyu Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Huajian Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Hong Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Zhigui Su
- Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
3
|
Lin ST, Wang CH, Chen AL, Andrew Wang TS. Utilizing Alkyne-Nitrone Cycloaddition for the Convenient Multi-Component Assembly of Protein Degraders and Biological Probes. Chemistry 2025; 31:e202403184. [PMID: 39642057 DOI: 10.1002/chem.202403184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have become a popular therapeutic strategy, and the development of multi-functional PROTACs has added complexity to their synthetic process. Although click reactions have been widely applied to prepare highly functionalized biomolecules, most of them are limited to two-component reactions, restricting the creation of more complex structures. Here, we developed a convenient multi-component assembly strategy via strain-promoted alkyne-nitrone cycloaddition (SPANC), which can be extended to a 3-component reaction when combined with nitrone formation. Using the 2-component assembly, we demonstrated the targeted protein degradation with both preassembled and in-cell assembled PROTACs. This strategy was also applied to facilitate the screening of E3 ligases in PROTACs and the preparation of various biological probes. Moreover, the 3-component assembly, via sequential nitrone formation and SPANC, enabled the synthesis of trifunctional 3-component PROTACs. The N-substituent, serving as an additional functional moiety, was designed as a photocage for sterically controlling PROTAC activity. The 3-component assembly can be further modified to provide additional control or enhance the cell-targeting ability of PROTACs. In short, our multi-component SPANC assembly strategy offers a modular and versatile synthetic platform for creating multi-functional PROTACs and biological probes.
Collapse
Affiliation(s)
- Shiou-Ting Lin
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| | - Chien-Hua Wang
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
- Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| |
Collapse
|
4
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
5
|
Zhang Q, Liu Y, Zhang J, Li Y, Wang J, Liu N, Zhang J, Pan X. Discovery of novel penetrating peptides able to target human leukemia and lymphoma for enhanced PROTAC delivery. Eur J Med Chem 2024; 277:116734. [PMID: 39094275 DOI: 10.1016/j.ejmech.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Proteolysis targeting chimeras (PROTAC) are bifunctional chimeric molecules capable of directly degrading binding proteins through the ubiquitin-proteasome pathway. PROTACs have demonstrated significant potential in overcoming drug resistance and targeting previously untreatable targets. However, several limitations still need to be addressed, including their high molecular weight resulting in poor membrane permeability and bioavailability. In this study, we proposed that cancer-targeted penetrating peptides could enhance the cell permeability of PROTACs. We developed 26 novel targeted penetrating peptides for leukemia and lymphoma cells, among which C9C-f(3Bta) and Cyclo-C9C-R exhibited superior membrane permeability, targetability, and stability. By combining C9C-f(3Bta) and Cyclo-C9C-R with IMA-PROTAC, we effectively enhanced the anti-proliferative activity of IMA-PROTAC, facilitated degradation of Bcr-Abl protein in K562 cells, and reduced downstream STAT5 phosphorylation. Furthermore, the combined application promoted cell apoptosis while blocking G1 phase progression. HPLC-MRM-MS revealed that the combination of C9C-f(3Bta) or Cyclo-C9C-R with IMA-PROTAC significantly enhanced intracellular IMA-PROTAC content. In summary, our proof-of-concept study validated the hypothesis that combining PROTACs with targeted penetrating peptides can improve protein degradation efficiency as well as anti-proliferative capabilities.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nanxin Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol 2024; 275:133680. [PMID: 38971291 DOI: 10.1016/j.ijbiomac.2024.133680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130021, China
| | - Anhui Wei
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
7
|
Thakur A, Rana M, Mishra A, Kaur C, Pan CH, Nepali K. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions. Eur J Med Chem 2024; 272:116472. [PMID: 38728867 DOI: 10.1016/j.ejmech.2024.116472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
8
|
Zhang R, Xie S, Ran J, Li T. Restraining the power of Proteolysis Targeting Chimeras in the cage: A necessary and important refinement for therapeutic safety. J Cell Physiol 2024; 239:e31255. [PMID: 38501341 DOI: 10.1002/jcp.31255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.
Collapse
Affiliation(s)
- Renshuai Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Yang C, Tripathi R, Wang B. Click chemistry in the development of PROTACs. RSC Chem Biol 2024; 5:189-197. [PMID: 38456041 PMCID: PMC10915971 DOI: 10.1039/d3cb00199g] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/16/2023] [Indexed: 03/09/2024] Open
Abstract
Proteolysis-targeting chimeras or PROTACs are hetero-bifunctional molecules designed to mediate the disposal of a target protein via recruitment of the ubiquitination-proteasome degradation machinery. Because of the chimeric nature of such molecules, their synthesis requires a key step of "assembling" whether in the lab or in situ. Furthermore, targeted PROTACs often are hetero-trifunctional and require a second "assembling" step. Click chemistry has the unique advantages of tethering two or more molecular entities of choice under near physiological conditions and therefore has been applied to the development of PROTACs in various ways. This review provides a succinct summary of this field with a critical analysis of various factors that need to be considered for optimal results. Specifically, we examine issues including applications of click chemistry in in situ assembly for improved delivery, conjugation with a targeting group for selectivity, rapid synthesis for linker optimization, and lysosomal degradation of extracellular and membrane-associated proteins. We also examine reaction kinetics issues whenever possible or warranted.
Collapse
Affiliation(s)
- Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| |
Collapse
|
10
|
Zeng S, Ye Y, Xia H, Min J, Xu J, Wang Z, Pan Y, Zhou X, Huang W. Current advances and development strategies of orally bioavailable PROTACs. Eur J Med Chem 2023; 261:115793. [PMID: 37708797 DOI: 10.1016/j.ejmech.2023.115793] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) have been an area of intensive research with the potential to extend drug space not target to traditional molecules. In the last half decade, we have witnessed several PROTACs initiated phase I/II/III clinical trials, which inspired us a lot. However, the structure of PROTACs beyond "rule of 5" resulted in developing PROTACs with acceptable oral pharmacokinetic (PK) properties remain one of the biggest bottleneck tasks. Many reports have demonstrated that it is possible to access orally bioavailable PROTACs through rational ligand and linker modifications. In this review, we systematically reviewed and highlighted the most recent advances in orally bioavailable PROTACs development, especially focused on the medicinal chemistry campaign of discovery process and in vivo oral PK properties. Moreover, the constructive strategies for developing oral PROTACs were proposed comprehensively. Collectively, we believe that the strategies summarized here may provide references for further development of oral PROTACs.
Collapse
Affiliation(s)
- Shenxin Zeng
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| | - Yingqiao Ye
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Heye Xia
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Jingli Min
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Jiamei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Zunyuan Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Youlu Pan
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Xinglu Zhou
- HealZen Therapeutics Co., Ltd., Hangzhou, Zhejiang, 310018, China.
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| |
Collapse
|
11
|
Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists? ChemMedChem 2023; 18:e202300422. [PMID: 37706617 DOI: 10.1002/cmdc.202300422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|